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 Abstract 

In this thesis, two different works related to cold start of a direct-injection (DI) gasoline 

engine are shown. First, effect of split injection is studied on engine exhaust temperature 

and hydrocarbon emissions for cold start conditions. Instead of single injection, two 

injections are done, one injection during the intake stroke and one injection during the 

compression stroke. Split injection is known to reduce jet wall wetting, thus reducing the 

hydrocarbon emissions from engine itself. Further, split injection reduces engine cycle-

by-cycle variability with respect to the single injection case.  

Correlations between start of injection for the injection in the intake stroke (SOI), end of 

injection for the injection in the compression stroke (EOI) and Split Ratio (SR) with Exhaust 

Temperature (Texh) and engine hydrocarbon emissions are proposed with the help of 

design of experiments (DOE). These correlations could be used for controlling exhaust 

temperature during cold start. 

Second, because of repetitive marshalling of a vehicle, i.e. cold start the engine on the 

vehicle and drive it a few feet and then turn it off, spark plugs are observed to get fouled. 

A spark plug is considered to be fouled when the insulator nose becomes coated with a 

foreign substance including oil, fuel or carbon. This enables the ignition coil voltage to 

follow along the insulator nose and ground out rather than bridging gap and firing 

normally. 

A tool to measure quasi real-time spark plug fouling is proposed in this work, which uses 

in-cylinder ion data to measure offset voltage which is then used to calculate spark plug 

shunt resistance. Based on the spark plug shunt resistance, fouling level of the plug can 

be calculated, and the condition of the plug can be determined.  
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 Chapter 1 

Introduction 

1.1 Motivation 

Split Injection Correlation and Exhaust Thermal Model 

Internal Combustion (IC) Engines are one of the major consumers of fossil fuel. This also 

leads to increase in emissions from these vehicles [1]. Recently, there have been 

technological advances in the field of Electric Vehicles (EV), however, there is still 

production cost of the battery associated with the vehicle which makes it expensive. Low 

range of operation and large time in recharging batteries may cause reluctance to switch 

to EV’s. Also, there aren’t enough charge stations for the EV’s in the remote locations of 

the country favoring internal combustion cars. Therefore, automotive manufacturers 

cannot fully depend on the electric vehicle, resulting in large fraction of vehicles to be still 

powered by IC engines in the following years. Therefore, it becomes important to 

continue research in IC engines to make it more efficient and less harmful to the 

environment.  

Cold start emissions of an IC engine are a major problem. The three main pollutants in a 

gasoline engine are Carbon Monoxide (CO), Nitrogen Oxides (NOx) and hydrocarbon 

emissions (HC) [2]. It is well known that emissions during cold start is significantly higher 

than when the engine is warmed up [3][4]. More than 90% of the allowable HC emissions 

are emitted during cold start  [5][6] which can be seen from Figure 1.  

Modern gasoline stoichiometric engines use a three-way catalytic converter which results 

in large reduction in all these emissions. The efficiency of the catalyst depends on the 
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temperature of its substrate. A typical catalyst is known to function efficiently for 

temperatures above 350-400°C known as its light-off temperature. Therefore, for a cold 

start condition where all the engine’s and catalyst’s temperatures are at room 

temperature, it becomes important to reach catalyst’s light-off temperature as quickly as 

possible so that the conversion of toxic gases is to non-toxic gases is maximum. 

 

Figure 1: Cumulative tailpipe HC and PM/PN emissions over the FTP-75 cycles for GDI 
engines [6] 

Exhaust temperature from each cylinder is measured via thermocouple and temperature 

of exhaust gas going inside the catalyst is and the substrate temperature is measured via 

thermocouples installed on the catalyst. To determine the light off temperature of the 

catalyst, it is important to model the catalyst temperature. To model the catalyst 

temperature, it is necessary to also model all the components downstream from the 

engine exhaust gas including exhaust manifold, turbocharger, and the connecting pipes 

between the components.  

Spark Plug Diagnostic Tool 
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IC engines are required to meet stringent emissions standards enforced by EPA. A lot of 

research is going on decreasing emissions, without affecting the performance and fuel 

economy of the engines. To meet the emissions demands, a closed loop combustion 

controls is required to study the combustion. Many sensing devices are used to analyze 

combustion including pressure sensors, optical sensors, and ion sensors. This thesis 

focusses on two different studies, one done using ion sensor and other done using in-

cylinder pressure sensor. 

Ion sensors are used to detect knock, partial burn, detect misfire, to determine air fuel 

ratio, to determine flame speed, late burns, diffusion flame, etc. Ion current can be sensed 

either via stand-alone ion sensor or via spark plug of the engine. The method of ion 

sensing using the spark plug is explained in Chapter 8.  

Spark plugs in an Internal Combustion engine are known to get fouled over time. Fouled 

plugs deteriorate combustion stability during idling, acceleration and sometimes under 

heavy fouling engine startup failure. Deposition of carbon particles, ferrocene deposits, 

MMT deposits, or liquid fuel on the tip of the electrodes of plug decreases the shunt 

resistance of the plugs. Ignition energy source leaks through the deposits thus preventing 

the center electrode to reach the voltage required to generate the spark. This leads to 

misfires in the engine and results in poor combustion stability.  

It has been observed that because of repetitive marshalling of newly assembled vehicles, 

i.e. cold start the engine and move the vehicle a few feet and shut the engine off, spark 

plugs tend to get fouled. This process takes 15 – 20 seconds and doesn’t allow the spark 

plug temperature to reach high enough to evaporate the fuel deposits on the electrodes. 

Cold temperature during marshalling plays an important role in plug fouling as the engine 

component’s temperature too low for adequate evaporation of the fuel. Therefore, it is 

important to maintain the plugs clean for a better product delivery to the customer. One 
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of the technique to clean the spark plug is to take the vehicles on a drive and drive it 

enough to that the temperature of the plugs is hot enough to burn off the deposits on the 

electrodes. But, this technique is time consuming and requires work force. Calibrators are 

continuously developing ‘Alt Cal’ which is the alternate calibration for the engine to be 

used until before supplying the vehicle to the customer. Hence, it is important for the 

calibrators to understand and study plug fouling and what are the calibration parameters 

which plays an important role in plug fouling. 

1.2 Research Scope    

Split Injection Correlation and Exhaust Thermal Model 

For the cold start split injection work, this thesis focuses on developing correlations 

between the SOI, EOI, SR and SA with engine exhaust temperature and combustion 

parameters including CA50, burn duration, ignition delay, etc. The correlations are 

developed using test data and performing regression analysis on it and fitting a curve on 

the data.  A thermal model of exhaust system is proposed which includes exhaust 

manifold, turbocharger and catalyst. Exhaust manifold and turbocharger are modeled as 

lumped models and are used to estimate the outlet temperature for both exhaust 

manifold and turbocharger. Here, turbocharger is considered as a thermal body for cold 

start as the work produced by turbocharger during cold start is negligible. Catalyst is 

considered to have a axial thermal gradient. Two catalyst thermal models are proposed 

showing two different techniques for calculating heat transfer of re-vaporization of 

condensed water in catalyst.    

Spark Plug Diagnostic Tool 
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This work focusses on developing a tool which would measure the spark plug fouling quasi 

real-time which can be used to study plug fouling and develop alternate calibration. The 

tool would use in-cylinder ion data from each cylinder of the engine and would output 

the plug shunt resistance or each spark plug as an indication for the fouling of the plug. 

This tool would only work for spark plug as an ion sensing probe. New alternate 

calibrations are being developed continuously and this tool would help calibrators to 

understand and study spark plug fouling. This tool will also help save Calibrators time of 

removing, observing, and reinstalling the plugs every time they check for plug fouling 

manually.   The algorithm will have to be modified to make it use for standalone ion 

sensor. Plug resistance can only be calculated when the spark plug is used as the ion probe 

– Voffset used in equation (60) cannot be measured for the plug otherwise. 

1.3 Overview of Thesis 

The content of the thesis in different chapters is as follows. 

In Chapter 2, background study and previous work done on cold start of a spark ignited 

engines is discussed. Discussion is mainly about the challenges in cold start and the 

strategies applied to overcome those challenges. A brief study of modeling of exhaust 

downstream components to estimate the catalyst light-off time is also shown.  

In Chapter 3, information about the experimentation is shown. The geometry of engine, 

the fuel used for testing, the software used and the instrumentations on the engine like 

thermocouples is discussed in this chapter. 

In Chapter 4, information about all the equations used for modeling the exhaust thermal 

model and different techniques used in modeling is discussed. Also, two different 

techniques in calculating the combustion parameters is shown in this chapter. 
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Chapter 5 gives the correlation of split injection parameters with the combustion 

parameters (like CA50, burn duration, etc.) and the exhaust thermal model. This chapter 

also includes the comparison between the estimated exhaust temperatures and the 

measured exhaust temperatures. 

Chapter 6, the summary and conclusion of the work done so far and suggestions for future 

work is mentioned. 

In Chapter 7, a literature review of work done previously regarding plug fouling analysis 

and solutions to prevent plug fouling is shown. Different ways to measure plug fouling 

and factors leading to plug fouling is mentioned. A brief study of ion current 

measurements is also shown. It also demonstrates basic information about the ion signal 

recorded using spark plug as ion probe.  

In Chapter 8, information about the engine used for the tests and the instruments used 

to log and analyze data is shown. The ion measuring technique is explained in this chapter. 

Also, the software used for computation is mentioned. 

Chapter 9 describes algorithm used to calculate the spark plug fouling. A schematic of the 

algorithm is also shown in this chapter which facilitates the understanding of data 

recording and analysis. 

Chapter 10 provides a guide to use the GUI running on the algorithm mentioned in 

Chapter 4. It also shows how to study and interpret the resulting graphs to determine the 

fouling on the spark plug. Also, different levels of fouling cases are shown in this chapter. 
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Finally, in Chapter 11, the conclusion of the work is mentioned and suggestions for 

modification if the tool is to be used in high performance engine with number of cylinders 

more than 8.   
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 Chapter 2 

2.1 Cold Start Background and Literature Review 

Cold start is starting the engine is cold, relative to the normal operating temperature. The 

transient nature of component temperature, engine speed and MAP (Figure 2) during 

cold start leads to cyclic variations [7]. This may lead to combustion instability and poor 

emissions.  

 

Figure 2: (Left) Engine Speed and In-Cylinder Pressure Data during Cold Start; (Right) 
Engine Speed, MAP and FRP during Cold Start; plotted from data sent by Ford Motor Co. 

There are primarily three major pollutants from spark ignition engines which are CO, HC 

and 
xNO [4]. It is known that more than 90% of the total tailpipe HC emissions are emitted 

during first few cycles of cold start[2][5][6]. Hence the engine operation control strategies 

emphasis greatly on reducing the bulk of HC emissions during the cold start. This can be 

done by reducing the emissions in the engine itself and/or by reaching the catalyst light-

off temperature as quickly as possible. The importance of catalyst temperature/ gas 

temperature inside the catalyst during cold start can be seen in Figure 3 which shows the 

effect of catalyst temperature on HC conversion efficiency of the catalyst. 
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Figure 3: Cumulative HC mass and Exhaust Gas Temperature measured after first brick of 
Catalyst during Cold Start; plotted from data sent by Ford Motor Co. 

The factors contributing to the emissions, combustion stability and catalyst temperature 

are shown in Figure 4. The blocks in blue are the independent control parameters, the 

blocks in yellow are the intermediate parameters and the blocks in green are the resulting 

parameters of our interest. The circles with same number are the connection between 

the blocks from which it is coming out and going in. The independent parameters (blocks 

in blue) includes controlling parameters like throttle angle, cam positions, fuel rail 

pressure, spark timing and split injection parameters including SOI, EOI and injection fuel 

split mass and parameters affected by ambient conditions like wall temperature and inlet 

air temperature. The parameters in the yellow blocks, which are affected by the 

parameters in blue blocks and will affect the parameters in the green blocks can be seen 

from the causality diagram. For example, air mass inside the engine depends on the 

manifold air pressure (MAP), engine speed and cam position. The MAP value depends on 

the throttle position. 
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Figure 4: Causality Diagram for a gasoline engine Emissions, Combustion Stability and 
Catalyst Temperature 

Several reasons account for the bulk emissions of HC during the cold-start. The main 

reasons are discussed in the following discussion. 

Cold Engine Walls 

Operating wall temperature of the engine is usually 90°C in warmed up engine. Cold walls 

during cold start makes stable combustion difficult due to heat loss to the engine walls. If 

the heat transferred to the walls exceeds the heat generated by combustion, this would 

result in poor mixing quality and possibly a lean mixture resulting in a difficulty to ignite. 

Cold walls and reduced charged temperature also lead to higher fuel impingement on the 

walls which results in higher engine out HC emissions. 

Catalyst Light-Off not Achieved 

Although a Three-Way Catalyst (TWC) is used to reduce the emissions form the engine, 

the catalytic reaction is highly temperature dependent. At temperatures below light off 
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temperature (<350°C), a significant amount of emissions escapes the catalyst without 

getting converted until the light-off temperature is reached (Figure 5). The temperature 

at which the conversion rate is 50% is known as the light-off temperature. For the graph 

shown in Figure 5, light-off temperature can be seen when the first brick temperature is 

350°C. 

 

Figure 5: Catalyst temperatures at 1cm and 5cm downstream of Catalyst face with 
Catalyst Efficiency, generated from data in [8] 

Low Fuel Rail Pressure 

Because of the relatively low engine speed (<300 RPM), it is difficult for the fuel pump to 

build pressure during cold start. Low fuel pressure results in larger fuel droplet size which 

reduces fuel air mixing and vaporization. This reduces the combustion efficiency which in 

turn increases HC emissions.  

Cam Phasing Inoperative 
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Similar to fuel rail pressure, it is difficult to build engine oil pressure to phase the cam 

locations. Cams are typically left in default positions when the engine is last turned off. 

These positions are generally not the optimum positions which leads to inefficient control 

of trapped mass inside the cylinder leading to higher amount of injected fuel for 

combustion resulting in increased HC emissions. [38] 

Open Loop Oxygen Sensor Control   

The oxygen sensor installed in the downstream of the exhaust system is used determine 

if the air fuel mixture is rich or lean. This is used as a feedback signal to control the amount 

of fuel and air to make the engine run at stoichiometric condition. The oxygen sensor only 

works above a certain temperature [9]. The oxygen sensor is turned on as soon as the 

exhaust is not condensing.  During cold start, because of the low operating temperature 

of the oxygen sensor, the oxygen sensor control is in open loop which affects the efficient 

control of AFR[10].  

With the above cold start limitations, it becomes important to reach the catalyst light-off 

as early as possible and to keep the combustion stability under limit which would control 

HC emissions. Choi et al [11], did experiments to determine relation between spark timing 

and HC emissions. He concluded that exhaust temperature increases with retard in spark 

timing. He also concluded that engine out HC increased when spark was extremely 

retarded ATDC because of aggravated combustion stability. Figure 6 shows how the 

average temperature of the exhaust gas and catalyst bed temperature (left) and catalyst 

temperature profile with different spark timings. It can be seen that the exhaust 

temperaure increases as the spark retards. 
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Figure 6: Effect of Spark Timing on Exhaust Gas Temperature; (left) Exhaust Gas 
Temperature and Catalyst Bed Temperature with Spark Timing; (right) Catalyst 

Temperature Profile with Spark Timing, created from data in [11] 

Cedrone and Chen [12], performed study to see if valve timing can be used to improve 

the catalyst warm up time. They concluded that exhaust temperature can be increased 

by using valve timing to change the residual gas fraction with overlap. Although, the 

drawback of using high valve overlap or increasing residual gas fraction is the large 

COVIMEP.  The COVIMEP rapidly increases beyond residual gas fraction of 30% (Figure 7). 

They stated that combustion retard with spark retard is a better option than combustion 

retard with increasing residual gas fraction as spark retard will produce higher exhaust 

gas enthalpy flow as suppression of exhaust temperature due to dilution is absent. The 

left graph in Figure 7 shows exhaust thermal energy flow in Watts with cam overlap.  
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Figure 7: (Left) Exhaust Thermal Energy Flow with Cam Overlap; (Right) COV(GIMEP) 
with Residual Gas Fraction, generated from data in [12] 

James A. Eng [5] stated five major reasons for HC emissions as shown below. 

1) Storage of fuel in combustion chamber crevices 

2) Absorption of fuel into deposits and oil layers 

3) Liquid fuel within the cylinder too rich to burn 

4) Quenching of combustion chamber surfaces  

5) Partial burns  

James with his 0-D ring pack crevice flow model and experimentation to determine the 

effect of ignition timing on HC emissions with lean and rich mixture and concluded that 

there is a sweet spot for CA50 for lowest crevice HC emissions for rich as well as lean 

conditions (Figure 8). The HC  emission is higher for CA50 advanced or retarded than the 

sweet spot. He also determined that the temperature at EVO increases with retard in 

CA50. 
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Figure 8: Total Crevice HC Mass for Rich and Lean Condition vs CA50; plot generated 
from data in [5]   

Lee et al. [13] with their experiments concluded that injection timing is the key parameter 

to improve combustion stability for a direct injection SI engine for cold start idling. Figure 

9 shows a comparison of combustion stability at two different ambient temperatures 

during cold start for a GDI engine. The ignition timing was optimized for lowest possible 

COVIMEP. Engine performance at higher ambient temperature (24 °C) shows better idle 

COVIMEP compared to the range of injection timings at lower ambient temperature (20 °C).  

 

Figure 9: Injection Timing and Temperature Effects on DI Cold Start Combustion Stability; 
plot generated from data in [13] 
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A common practice to improve the combustion stability during cold start is doing split 

injection. One injection is done in the intake stroke and the second injection is done in 

the compression stroke. Xiangdong Chen et al. [14], from his experimentation on a GDI 

engine concluded that Standard Deviation of Net IMEP reduces when single injection is 

switched to split injection for cold start (engine and ambient temperature at about 20°C).  

Figure 10 shows combustion stability comparison between single injection and split 

injection. The engine speed and load were 1350 rpm and 1.5 bar NMEP. The split ratio for 

the fuel he used was 80:20 meaning 80% was injected in the first cycle and 20% was 

injected in the second injection. The timing for the end of second injection was -8 to 8 

Crank Angle Degree (CAD) relative to spark. 

 

Figure 10: Comparison of single injection and split injections on combustion stability 

Another study done by Q. Fan et al [15], performed a study to find the optimum injection 

timing of split injection and fuel split ratio. He concluded that extremely early or late first 

injection is timing is unfavorable. The second injection should be at least 90 CAD BTDC for 

cranking speed of 400 RPM and excess ratio of 1. Misfire occurs if the second injection 

timing is advanced than 90 CAD BTDC for this condition. The timing of second injection 

has more effect on combustion than the first injection and, also the amount of 2nd fuel 

injection should be higher for better combustion stability. First injection at 120 CAD ATDC 
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(intake), second injection at 60 CAD BTDC (spark) and split ratio of 0.5 is proposed for 400 

RPM for stable first cycle combustion. 

Costa et al [16], compared the effect of single injection and split injection a GDI engine 

for a fixed engine speed, first injection and spark timing. The results are showed in Table 

1. Cyclic variability increases as the second injection timing approaches TDC. 

Table 1: Performance comparison for single and split injection at 2000 RPM and 7.7 bar 
IMEP; from data in [16] 

RPM SOI1 
(°BTDC) 

SOI2 
(°BTDC) 

SA 
(°BTDC) 

IMEP 
(bar) 

IMEPCOV

(%) 

Pmax 
(bar) 

2000 300 - 15 7.8 3.0 42.6 

2000 300 80 15 7.6 4.6 30.1 

2000 300 100 15 7.7 3.7 33.8 

2000 300 140 15 7.7 2.3 41.5 

2000 300 200 15 7.7 2.6 41.6 

The advantages of split injection are the increase in the cylinder pressure and reduces 

xNO and HC values as shown in Figure 11. 
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Figure 11: Emissions comparison of Single and Split Injection; plotted from data in [16] 

Ritchie et al. [17] performed a study on split injection with gasoline, ethanol and DMF on 

a direct injection spark ignition engine. Using gasoline, with fuel injection ratio of 2:1 

(SOI1:SOI2), increase of IMEP by 1.2% was found when SOI2 timings were between 240 

and 90 CAD BTDC at WOT.  He concluded that CO, HC and NOX emissions are better in 

split injection strategy than in single injection. This is found when SOI2 timings are early 

(SOI2>180 CAD BTDC) with fuel injection ratio of 2:1. 

Cedrone and Chen [18] in another paper concluded that the exhaust sensible enthalpy is 

mainly determined by combustion phasing. When ignition timing is changed from 7 CAD 

BTDC to 17 CAD BTDC, the CA50 location shifts from 36 to 84 CAD ATDC (Figure 12) and 

the exhaust gas temperature varies linearly from 525K to 750K. The variation is linear as 

the NMEP is held constant at 2 bar. 
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Figure 12: Effect of CA50 on Exhaust Sensible Enthalpy Flow and COV of GIMEP; plotted 
from data in [18] 

 At constant IMEP the exhaust chemical enthalpy increases with retard in ignition because 

higher air charge is required for to compensate for decreasing conversion efficiency. They 

also studied the effect of second injection on CA50 values, COVIMEP and exhaust 

temperature. A split of 70:30 by fuel volume was used keeping the first injection timing 

fixed at 60 CAD ATDC-intake. The engine was made to run at stoichiometric conditions for 

the experiments. From Figure 13 it can be seen, as the second injection timing is retarded, 

the CA50 also retards for given timing of ignition till a certain crank angle (290 CAD ATDC-

intake) after which the CA50 starts advancing. As the CA50 location retards, the COV of 

GIMEP also increases. It can also be observed that as the CA50 location retards from 50 

to 60 (CAD ATDC), the exhaust gas temperature also increases from 640°C to 720°C. 
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Figure 13: Effects of Second Injection timing on (a) CA50, (b) COV of GIMEP and (c) 
Exhaust runner temperature for different ignition timings; plotted from the data in [18] 

2.2 Cold Start Literature Review Summary 

Highly retarded spark timing has been studied in detail and its effects on exhaust gas 

temperature, CA50 and combustion stability have been shown. From these studies, a 

number suggest the most efficient way of increasing the exhaust gas temperature is by 

retarding the spark timing for faster catalyst light-off. However, all the studies show a 

limitation on the extent of the spark timing retard as the combustion stability starts to 

deteriorate. 



www.manaraa.com

 

21 
 

The effect of multiple injections on the combustion stability has also been studied in the 

literature. Split injection reduces the problems related to wall and/or piston wetting 

which helps in improving the combustion stability. All these studies are mainly in regard 

with cold start of the engine. Although, the effect of timing of the first injection is studied 

to be insignificant, the effect of second injection timing on exhaust gas temperature, CA50 

and combustion stability is studied. 

While these studies provide the basis on the trends of CA50 and exhaust temperature 

with spark retard and split injection, there is a lack of study which gives correlation 

between the control parameters including split injection parameters and spark timing on 

combustion parameters (like CA00-10, CA50, CA10-90) and exhaust gas temperature. 

Thus, the intent of this research is to provide correlations which can be further used for 

understanding the sensitivity of these parameters and for future control purposes. 

2.3 Exhaust Thermal Model Literature Review 

Temperature of the catalyst during cold start should be carefully controlled. The catalyst 

is generally not active below 350 -400°C and begins to age rapidly above 1000°C. Severe 

ageing of the catalyst can occur at temperatures above 1400°C and the substrate itself 

can melt [36]. As this research concerns the cold start operation of the engine, our focus 

is on the reaching the catalyst light-off temperature.  

Peyton Jones et al. [37] describes the catalyst models typically fall into one of the 

following three categories.  

1) Detailed physical model based on fundamental chemical and thermos-fluid dynamic 

principles. They include heat and transfer equations in three-dimensional 



www.manaraa.com

 

22 
 

accounting the change in exhaust gas composition as the continuously react with 

each other in the catalytic environment.  

2) Simplified kinetic models, based on the reactions between various gas components, 

as well as the gas storage on the catalyst surface. Such models can be represented 

by coupled, lumped parameters. These models are required to have input gas 

composition either measured or predicted.  

3) Simplified models, based on the assumption that catalyst behavior is based on the 

dynamics of gas storage. Models like these contain single non-linear dynamic 

characterization of input/output AFR response.  

The oxygen storage potential of the catalyst is well studied in different literatures. 

However, [36] show that the storage and release of oxygen is not significant during the 

cold start conditions. Typically running the engine on the rich side results in less oxygen 

in the exhaust for the catalyst to store. Also, the oxygen storage mechanism of 

absorption/ desorption is dependent on transient AFR over a wide range of engine 

operation. However, steady state conversion efficiency of the engine has an important 

role during cold start operations of the engine. The conversion efficiency can be described 

as the “S” shaped Wiebe function. 

01 exp ( )mu u
y a

u

 
    

          ( 1 ) 

Where, 0u is the ordinate at y = 10% and u the difference in u and a and m are fitting 

parameters. This Wiebe function can be extended to two-dimensional equation of 

catalyst efficiency ( ) as a function of temperature (T) and phi ( ) as shown in the 

following equation.  
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Andrianov et al. [19] developed a cold start emission model of an SI engine and 

aftertreatment system. This included developing thermal models for downstream 

components from engine like exhaust manifold, connecting pipes and three-way catalyst. 

The exhaust thermal model in this thesis is similar to the one developed by Andrianov. 

Thermal modeling is done using only convective heat transfer and applying the first law 

of thermodynamics on the gas, and neglecting the kinetic energy, equations for the 

exhaust manifold model are made. Similar equations are used in modeling exhaust 

manifold model proposed in this thesis. Also, similar equations are extended to the 

turbocharger model proposed in this work. Nusselt number is calibrated for convective 

heat transfer coefficient values to calibrate the exhaust manifold model by Andrianov, 

whereas, the model proposed in this work, convective heat transfer multiplied by the 

surface area value is used to calibrate the exhaust manifold and turbocharger model.   

Gonzalez et al [20], developed a catalyst model considering the water vapor condensation 

inside the catalyst during cold start conditions for a gasoline engine operating at 

stoichiometric conditions. Assuming stoichiometric combustion, equation (3) is used to 

estimate the mass of water vapor in the exhaust gas.  

8 18 2 2 2 2 2

25
( 3.76 ) 8 9 47

2
C H O N CO H O N       ( 3 ) 

From this equation for gasoline (approximated as Isooctane), it is derived that 1.4 kg of 

water vapor is produced per kg of fuel burned and, also partial pressure of water vapor in 

exhaust gas is determined to be 0.14 bar. With the value of partial pressure of water 

vapor, the dew point of the exhaust gas is determined to be 53 °C using the vapor pressure 
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curve for water as shown in Figure 14. Having calculated the dew point temperature, the 

mass of condensed water is calculated with saturation pressure at each temperature. 

 

Figure 14: Vapor Pressure curve for water; plotted from data in [20] 

2.4 Exhaust Thermal Model Literature Review Summary 

Simple thermal models are studied in details and a similar simple model is proposed in 

this thesis for exhaust manifold, turbocharger and catalyst. Although all the catalyst 

models studied have included exhaust gas reaction equations occurring inside the 

catalyst, whereas, the model proposed in this thesis, the exhaust gas reaction equations 

are neglected and only focused on the heat transfer between the gas and the catalyst 

substrate.  

A stoichiometric equation is solved for E10 fuel as done by Gonzalez et al [20] for gasoline 

(Isooctane), and water vapor concentration is calculated which is used to calculate the 

dew point temperature for the exhaust gas and amount of water condensed inside the 

catalyst at low temperatures.  
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 Chapter 3 

3.1 Experimental Setup 

A four-cylinder Ford 2.0L Ecoboost direct-injection turbocharged spark-ignition engine 

was used for testing split injection. The engine is located in APSRC lab facility of Michigan 

Technological University.  Characteristics of the engine are given in Table 2. The fuel used 

for testing was gasoline E10 with the fuel properties are shown in Table 3. 

Table 2: 2L Ford Ecoboost Engine Specifications 

Bore 87.5 mm 

Stroke 83.1 mm 

Connecting Rod Length 155.86 mm 

Wrist Pin Offset 0.6 mm  

Compression Ratio 9.3:1 

Engine Displacement  1.999 L 

Number of Cylinders 4 

Firing Order  1-3-4-2 

 

Table 3: E10-87 AKI Test Fuel Properties 

Carbon (Wt%) [m/m] 83.06  

Hydrogen (Wt%) [m/m] 13.48 

Oxygen (Wt%) [m/m] 3.46 

Density [kg/m3] 741.9 
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Lower Heating Value [MJ/kg] 41.725  

Stoichiometric Air-Fuel Ratio (AFR) 14.06 

Research Octane Number [-] 91.7 

RVP [kPa] 65.7 

 

 

Figure 15: 2.0L Ford Ecoboost engine with AC Dynamometer 

The engine is coupled to an AC dynamometer which is used to control the speed of the 

engine (Figure 15). National Instruments LabVIEW [21] software is used as a software 

interface to control the speed of the dynamometer. Temperature measurements using 

thermocouples are also logged using LabVIEW [21]. ATI Vision software [22] is used as the 

ECU interface to control the engine controlling parameter including load, air/fuel ratio, 

injection timing, valve timing, spark timing, etc. Combustion Analysis Software (CAS) [23] 

is used to track and analyze real time combustion parameters although a few combustion 
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parameters from CAS cannot be trusted which will be discussed later. CAS is used to log 

combustion parameters including in-cylinder pressure, IMEP, etc. 

 

Figure 16: Engine Instrumentation Overview 

Figure 16 shows an overview of the instrumentation on the Ford 2.0L engine. Each 

cylinder of the engine is equipped with Kistler 6125A pressure transducer used to log in-

cylinder pressure data. This pressure data is used to calculate the combustion parameters 

including CA50, CA00-10, CA10-90, etc. IMEP is also calculated using pressure data. A BEI 

HS25 Incremental optical encoder attached to the engine and allows to log data for every 

0.5 crank angle giving a good resolution of the data recorded. 

As shown in Figure 17, there are four 1/8” K-type ungrounded thermocouples installed in 

the exhaust port near the exhaust valve measuring the temperature of the exhaust gas 

coming out of the engine form each cylinder. One 1/8” K-type ungrounded thermocouple 

to measure the exhaust manifold temperature is installed on the block between the 

exhaust manifold and turbocharger. Another 1/8” K-type ungrounded thermocouple 

installed on the same block is used to measure the exhaust manifold outlet temperature 
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going to the turbocharger. The cold junction compensation (CJC) for these thermocouples 

are done in the DAQ system itself. 

 

Figure 17: Exhaust Thermocouples; 1. Exhaust Manifold Body Temperature, 2. EGT 
located at the exhaust valve for 4 cylinders, 3. Exhaust Manifold Outlet Temperature 

Inlet temperature of the exhaust gas is measured by a thermocouple located at the inlet 

of the catalyst. Four thermocouples are installed on the catalyst at various locations as 

shown in Figure 18 to measure the exhaust gas temperatures. The catalyst was provided 

by Ford Motor Co. and the exact location/ penetration and type of the thermocouples 

were unknown. The thermocouple shown as ‘Catalyst In’ in the Figure 18 serves two 

purposes in model calibration. One, it is used as Turbine Outlet temperature for 

calibrating Turbocharger model and second, as a Catalyst Inlet temperature while 

calibrating the Catalyst model. Another thermocouple located at the outlet of the catalyst 

is used to measure the exhaust gas temperature. 
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Figure 18: Three-Way Catalyst with thermocouples measuring exhaust gas temperatures 
at different locations 

A summary of the sensors used in this study is shown in Table 4.  

Table 4: Summary of sensors used for the study 

System Sensor Make/Model Signal Name DAQ/ 
Software 

In-Cylinder 
Pressure 

Pressure Sensor Kistler - 6125A 

Serial Number 

Cyl1: 615358 

Cyl2: 615359 

Cyl3: 953358 

Cyl4: 641982 

PresTrace.Cyl1 

PresTrace.Cyl2 

PresTrace.Cyl3 

PresTrace.Cyl4 

CAS 

Crank Angle Optical Encoder BEI HS25 tqca1 CAS 

Exhaust Gas 
Temperature 
near valve 

Thermocouple 1/8” K-type 
Ungrounded  

EGT 1 

EGT 2  

EGT 3 

NI 
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EGT 4 

Exhaust 
Manifold Outlet 
Temperature 

Thermocouple 1/8” K-type 
Ungrounded  

Right Bank 
Turbine In 

NI 

Turbine Outlet 
/ Catalyst Inlet 
Temperature 

Thermocouple  EGT Right Bank 
Turbine Out 
Converter In 

NI 

Exhaust Gas 
Temperatures 
inside Catalyst 

Thermocouple  UDT 2C 

UDT 2C 

UDT 4C 

UDT 5C 

NI 

Catalyst Outlet 
Temperature 

Thermocouple  EGT Right Bank 
Converter Out 

NI 

 

3.2 Experimental Procedure 

Tests for Split Injection Correlations 

Cold start tests were conducted for developing correlations for split injection parameters 

with combustion parameters and exhaust temperature. A test procedure was developed 

to simulate cold start and to have repeatability. The tests were done at 1250 RPM and 

engine load of 2.5± 0.2 bar IMEP. The following test procedure was followed. 

1) Engine IMEP changes when either of the four controlling parameters (SOI, EOI, SR 

and SA) is changed. Hence, it is required to adjust throttle angle for each 

combination of SOI, EOI, SR and SA to maintain IMEP at 2.5 bar. The throttle 
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adjustment for a combination of SOI, EOI, SR and SA was done when the engine 

was warmed up and the throttle angle was noted.  

2) Once the throttle angle was noted, the engine was motored using the motoring 

capability of the AC dynamometer until the coolant temperature drops down to 

33°C.  

3) Engine was made to run at all preset control parameters value of SOI, EOI, SR, SA 

and throttle angle at 1250 RPM and the CAS data was logged in ‘Startup 

Combustion’ mode. The ‘Startup Combustion’ mode allows data to be recorded at 

the start of the engine. 1000 cycles of data were recorded. 

4) After completing the test, SOI, EOI, SR and SA values were changed for the next 

test data point, and the throttle angle was noted for next data test point and the 

procedure is repeated. 

Tests for Validation/ Calibration of Thermal Model 

The test procedure for the tests to validate the thermal model was as follows. The engine 

was allowed to cool overnight to ensure all the engine component’s temperatures were 

the same as the ambient temperature. The data logging in CAS was set in ‘Startup 

Combustion’ mode and engine was started with a constant throttle angle to produce ~2.5 

bar IMEP at 1250 RPM. Data including exhaust temperatures, in-cylinder pressures, etc. 

were recorded for the first 8000 cycles (CAS allows data logging up to 8000 cycles). 
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 Chapter 4 

 Combustion Parameters Calculation 

4.1 Equations Used for Combustion Parameters 

Estimation 

It is known that by doing split injection the combustion stability improves [13][14]. Split 

injection is defined when one injection is done in the intake stroke and one injection in 

the compression stroke. SOI refers to start of first injection and EOI refers to end of second 

injection timing. As mentioned earlier, ATI Vision software [22] is used as the ECU 

interface to control the operating parameters of the engine. Thus, it allows to override 

values for SOI and EOI timings whereas, end of injection for the first injection and start of 

injection for the second injection timing is determined by the software depending on the 

amount of fuel to be injected and fuel rail pressure. For a certain lambda value, the 

injected fuel for each injection is determined by Split Ratio (SR).  SR equals 1 refers to 

when all the injection happens in first injection and SR equals 0 means all the injection 

happens in the second injection while compression. Figure 19 shows the schematic of split 

injection. As we are dealing with cold start conditions, it is better to have retarded spark 

timing (after TDC) for quicker light-off of the catalyst [11].  

 

Figure 19: Schematic of Split Injection 

In-cylinder pressure trace is used to calculate the combustion parameters on per cycle 

basis. Crank angle-based pressure data was recorded every 0.5 CA for first 1000 cycles. 
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An average of these for a particular test is used to find correlations between the 

combustion parameters and controlling parameters including start of injection, split ratio 

and ignition timing. Pressure trace is used to calculate combustion parameters including 

CA50, CA00-10 and CA10-90. The values of these parameters are based on polytropic 

indices of compression and expansion. As we are dealing with cold start condition, partial 

burn of the fuel is to be considered while calculating the combustion parameters. Details 

are discussed later in this chapter. 

4.1.1 Polytropic Indices Calculation 

Polytropic indices are calculated form the in-cylinder pressure curve and volume of the 

cylinder using the below formula. This polytropic index is calculated for compression as 

well as expansion according to the following equation. 

2 1

2 1

ln( ) ln( )

ln( ) ln( )
poly

P P
n

V V





     ( 4 ) 

Where P is the absolute cylinder pressure, V is the cylinder volume, and 1 and 2 are points 

in the compression and expansion stroke.  

Crank Angle (CA) equal to -180 CAD refers to Bottom Dead Center (BDC) in compression 

stroke and 180 CAD refers to BDC after expansion. 0 CAD indicates Top Dead Center (TDC) 

of expansion stroke. 

Usually -90 to -50 BTDC is chosen as 1 and 2 points for calculating polytropic index for the 

compression stroke. Similarly, for calculating expansion polytropic coefficient, 70 to 110 

ATDC interval is chosen. Figure 20 shows the log P-V diagram for a typical advanced 

combustion. Polytropic indices are the slopes of the curve in the compression and 
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expansion region. The curve highlighted by blue color shows the interval for calculation 

of compression polytropic coefficient and the curve highlighted in green shows the 

interval for calculation of the expansion polytropic coefficient. The diamond on the curve 

shows the spark timing. 

 

Figure 20: Log PV diagram for Advanced Combustion 

4.1.2 Heat Release Rate Calculation 

Heat Release Rate is calculated using the pressure data with volume and the polytropic 

indices. The equation used to calculate the heat release rate is as follows [24]. 

1

1 1

c

c c

ndQ dV dP
P V

d n d n d  
 

 
                   ( 5 ) 

Where Q is the apparent heat released, nc is the combustion polytropic coefficient, P and 

V are the instantaneous pressure and volume values. The data logged is logged every 0.5 
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CA. Therefore, the continuous differential equation must be approximated. Central 

difference method is used in our case for the approximation.  

( ) ( ) ( 1) ( 1) ( 1) ( 1)

( ) ( )

( ) ( ) ( 1) ( 1) ( ) ( 1) ( 1)

1

1 1

i c i i i i i

i i

i c i i i c i i i

dQ n V V P P
P V

d n n    

   

   

 
 

   
      ( 6 ) 

Where, i is increment every 0.5 CA which gives the heat released rate values every 0.5 CA. 

Combustion γ value used here can be interpolated from compression and expansion 

polytropic indices, which are calculated from log P-V diagram as shown in Figure 21. 

CAHR_start refers to the crank angle at which heat release start and CAHR_stop refers to the 

crank angle at which heat release stop. 

 

Figure 21: Schematic of interpolation for calculating combustion gamma 

Heat released can be calculated by integrating equation (5).  

4.1.3 Combustion Parameters Calculation  

Combustion Delay (CA00-10), 50% mass burn location (CA50) and Burn Duration (CA10-

90) are important parameters defining combustion characteristics. The polytropic 

coefficient should is a vital parameter for calculation of combustion parameters. For 

retarded combustion, where combustion is still happening for the interval 70 to 110 CAD 

ATDC, will lead to unreliable values for PolyE. This gives incorrect values for Mass Fraction 

Burn (MFB). Two methods are proposed for to deal with this issue. 
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Method A 

As the PolyE values are incorrect, one way is to ignore the PolyE values and work with just 

PolyC values instead. This will prevent from calculating wrong MFB values. 

Method B 

Another method proposed in this work is changing the interval for calculation of 

expansion polytropic coeffect from 70 - 110 CAD ATDC to 7 to Ignition timing plus 12 CAD. 

Figure 22 shows the modified interval for calculation of expansion polytropic coefficient. 

 

Figure 22: Log PV Diagram for Retarded Combustion 

Heat released is often used to calculate the location of mass fraction burned by 

normalizing its values by the net heat released for the same cycle.  Heat released 

normalized by its maximum value at every crank angle per cycle would give the curve for 
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MFB. It is assumed that all the injected fuel is burned during combustion promotes the 

idea of diving the heat released values by its maximum value.   

max( )

Q
MFB

Q
           ( 7 ) 

As this work focusses on the cold start on an engine, because of the cold walls, lower 

temperatures, higher heat transfer to the wall, there may rise a situation where cycles 

may not burn completely. Hence, engine cycles with partial burn are also taken into 

consideration while calculating the mass fraction burn curve.  

 

Figure 23: IMEP distribution for test -70 CAD BTDC EOI, 340 CAD BTDC SOI, 0.7 SR and 15 
CAD ATDC, target IMPE = 2.5 bar @ 1250 rpm; Red- partial burn, green - complete burn, 

grey - high IMEP due to preceding partial burns 

Figure 23 shows a sample test data with IMEP distribution indicating partial burns cycles 

in the data set. For a sample test data run at steady state, heat release values for all the 
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cycles is sorted in ascending order and median of the sorted heat release is recorded. 80% 

of the median is calculated and used as a threshold for determining partially burnt cycles. 

For all the cycles above the threshold, equation (7) is used for mass fraction burn 

calculations. For the cycles having Q  lower than the threshold, the mean of all the cycles 

having Q  more than the median value is calculated and used in the denominator for mass 

fraction burn calculations as shown in equation (8). Because of this, there may be a few 

cycles which would not have CA90 or CA50 values. 

_

_
( )

partail burn

partial burn

median

Q
MFB

mean Q Q



    ( 8 ) 

4.1.4 Indicated Mean Effective Pressure 

In cylinder pressure data of the engine over an engine cycle can be used to calculate the 

work transfer from the gas to the piston of the engine. The cylinder pressure and 

corresponding volume can be plotted, and area enclosed in the curve gives the indicated 

work (W). Work delivered to the piston over compression and expansion stroke only gives 

gross indicated work (Wig) whereas, if all four strokes are considered it becomes net 

indicated work (Win).  

W PdV              ( 9 ) 

Indicated mean effective pressure (IMEP) is an important factor for comparing 

performance of engines with different displacement volume. It is a representation of how 

much work has been produced by the piston in an engine cycle. This can be calculated 

using the in-cylinder pressure data against crank angle or cylinder volume. IMEP can be 

classified either as Gross IMEP or Net IMEP depending on whether Pumping loss is 
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accounted or not. Gross IMEP is calculated for the compression and expansion cycle, 

neglecting pumping whereas Net IMEP is calculated for an entire cycle of 720 CAD.  

_ _

_ _

ig or in

g or n

d

W
IMEP

V
     ( 10 ) 

Where, IMEPig_or_in is indicated mean effective pressure (gross or net), Wig_or_in is the 

indicated work produced (gross or net) on the piston and Vd is the displaced volume.  

Coefficient of Variance of IMEP (COVIMEP) and Standard Deviation of IMEP (SDIMEP) are 

important factors in determining cycle to cycle variation of combustion which defines 

combustion stability. Standard deviation is a measure to represent variation in the data 

set. A low standard deviation means the data points tends to be close to the mean 

whereas, a high standard deviation value means the data points are spread out. Similarly, 

higher value of SDIMEP or COVIMEP represents spread out data points meaning higher cycle 

to cycle variation of combustion showing unstable combustion. The equation for standard 

deviation is given below. 

2

1
( )

1

N

ii
x x

SD
N








             ( 11 ) 

Where, N is the number of points ( x ) in data set and x is the mean of the points in the 

data set. The correlation between the coefficient of variance and standard deviation for 

a data set is as follows, 
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100
( )

IMEP
IMEP

SD
COV

mean IMEP
      ( 12 ) 

Gross COVIMEP is a popular parameter to define combustion stability for normal advanced 

combustion, but, because this study is regarding cold start where IMEP values are pretty 

low (<2.5 bar), we use SDIMEP. This is done because the low values of IMEP for cold start 

and any small variation in IMEP would show large COVIMEP which gives false 

interpretation. Typically, less than 2% COVIMEP or 7 kPa SDIMEP is considered as a limit for 

combustion stability for part load conditions. For idle conditions where IMEP is lower than 

part load, 10-14 kPa SDIMEP is the limit for combustion stability as per Ford’s guidelines. 
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 Exhaust Thermal Model 

4.2 Equations Used for Exhaust Thermal Model 

To determine the light-off time of the Three-Way Catalyst (TWC), it is important to 

estimate the temperature of the TWC based upon energy to the exhaust flow and loses 

to the environment. To estimate the catalyst temperature, all the downstream 

components from the engine including the exhaust manifold, the turbocharger and the 

connecting pipes are required to be modeled. The body temperature of all the 

components depends on the temperature of the inlet gases into the component and the 

mass flow of the exhaust gases.  

4.2.1 Combustion Equation 

Ideal combustion of the E10 fuel produces CO2, H2O, O2 and N2. Solving these equations 

for the coefficients for a, b, c and d would give the number of moles of CO2, H2O, O2 and 

N2 respectively for 1 mole of C. This can be used to calculate the partial pressure and mass 

fraction of the water vapor.  

2 2 2 2 2 2( 3.77 )HCR OCRCH O R O N a CO b H O c O d N             ( 13 ) 

HCR is the Hydrogen to Carbon molar ratio.  OCR is the Oxygen to Carbon molar ratio. 

These values can be obtained from the fuel properties. R is the reaction coefficient for 

one mole of Carbon which is given by the following equation. 
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1
4 2

HCR OCR
R         ( 14 ) 

Table 5: Combustion equation values for E10 fuel for lambda =1 

Variable HCR OCR R a b c d 

Value 1.93 0.03 1.46 1 0.96 0 5.54 

4.2.2 Dew Point Temperature Calculation 

During a cold start operation, because of the temperature of the exhaust components 

being at the room temperature, the temperature of the exhaust gases tends to fall below 

its dew point temperature. This leads to condensation of water vapor present in the 

exhaust gases, as can be seen from equation (13). To calculate the mass flow of water 

vapor in exhaust gases, chemical equation of fuel combustion is to be solved. The solving 

of chemical equation requires the knowledge of mass to mole conversion which is done 

using the following equation, 

i
i

i

m
n

MW
      ( 15 ) 

Here ni is the number of moles, mi is the mass and MWi is the molecular weight. Mole 

fraction is the number of moles of each component divided by the total number of moles. 
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This is required to calculate the partial pressure of the water vapor in the exhaust gases. 

It is later used to calculate the dew point temperature. 

2

2

2 2 2 2

,

,

,

H O vapor

H O vapor

CO O H O vapor N

n
y

n n n n


  
     ( 16 ) 

To determine the mass of water vapor in the exhaust gases, mass fraction is used. This 

value is used to calculate the water vapor holding capacity of the air and the dew point 

temperature. For lambda equal to 1, yH2O,vapor is calculated to be 0.12.  

2 2

2

2 2 2 2 2 2 2 2

, ,

,

, ,

( )

( ) ( ) ( ) ( )

H O vapor H O vapor

H O vapor

CO CO O O H O vapor H O vapor N N

n MW
x

n MW n MW n MW n MW




      
     ( 17 ) 

Mixing ratio or Mass Mixing Ratio is the mass of water vapor divided the mass of dry air. 

This ratio is used to estimate the Dew Point Temperature of the exhaust gas. The dew 

point temperature for E10 fuel for stoichiometric combustion is 326 K. 

4.2.3 Exhaust Manifold Thermal Model 

The exhaust manifold thermal model incorporates the exhaust manifold as well as the 

exhaust valves. Heat transfer from the exhaust valves are also considered while modeling 

exhaust manifold. The exhaust thermal model estimates the temperature of the exhaust 

gas at the outlet of the exhaust manifold as a function of inlet temperature of the exhaust 

gas of the exhaust manifold. The model for the exhaust manifold is modeled as lumped 

model with convective heat transfer. It is assumed that the flow is incompressible and is 

at steady state. Kinematic variation in the flow including filling in the exhaust manifold for 

the first cycle, heat transfer between the exhaust gases from first cycle and the gases 
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already present inside the exhaust manifold when the engine was run last, etc. are 

neglected.   

 

Figure 24: Schematic of Exhaust Manifold Control Volume 

Figure 24 shows a schematic of the exhaust manifold control volume. Applying the first 

law of thermodynamics to the exhaust manifold control volume gives the following 

equation (18).  

( ) _ _ ( ) _ ( )

_ _ _ ( ) _ ( )

( )

( )

g k p g in manifold k out manifold k

gs manifold i manifold g manifold k m manifold k

m C T T

h A T T

   

  
 

( 18 ) 

Where, ṁg(k) is exhaust gas mass flow rate for kth cycle, Cp_g  is the heat capacity of exhaust 

gas in constant pressure process, Tin_manifold(k)  is the temperature of the exhaust gas at the 

inlet of the exhaust manifold, Tout_manifold(k)  is the temperature of the exhaust gas at the 

outlet of the exhaust manifold for kth cycle, hgs_manifold  is the convective hear transfer 

between exhaust gas and the body of the exhaust manifold for kth cycle, Ai_manifold is the 

internal surface area of the exhaust manifold, Tg_manifold(k) is the average temperature of 

the exhaust gas inside the exhaust manifold for kth cycle and Tm_manifold(k) is the 

temperature of the exhaust manifold body for the kth cycle. Hgs.Ai_manifold is calibrated for 

various temperature to calibrate the model based on the experimental data.  The value 

of Cp_g for the exhaust gas is assumed to be same as that of air that for the temperature.  



www.manaraa.com

 

45 
 

It is assumed that the body temperature of the exhaust manifold is constant for one 

engine cycle with no thermal gradient along the flow of the exhaust gases. Also, for heat 

transfer from the exhaust gas to exhaust manifold, the gas temperature is assumed as the 

average of the inlet and outlet gas temperature.  

_ ( ) _ ( )

_ ( )
2

in manifold k out manifold k

g manifold k

T T
T


    ( 19 ) 

The conductive heat transfer in and out of the exhaust manifold body is negligible 

compared to the convective heat transfer. Also, the radiation heat transfer from the 

exhaust manifold is neglected as the model is mainly designed for cold start conditions. 

Figure 25 shows a schematic diagram of heat transfer to the wall of the exhaust manifold 

from the exhaust gas and from the wall of exhaust manifold to the surroundings.  

 

Figure 25: Schematic of heat transfer from the Exhaust Manifold to ambient 

Again, applying first law of thermodynamics to exhaust manifold body for the heat 

transfers.  
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_

_ _ _ _ _ _

_ _ _
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sa manifold o manifold m manifold atm
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m C h A T T
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( 20 ) 

Where, mm_manifold is the mass of exhaust manifold, Cp_man heat capacity of the exhaust 

manifold, Tm_manifold is the temperature of the exhaust manifold, hsa_manifold is the 

convective heat transfer coefficient between the exhaust manifold body with 

surrounding, Ao_manifold is exhaust manifold outer surface area and Tatm is the ambient 

temperature. The subscript manifold stands for exhaust manifold. hgs_manifold.Ai_manifold and 

hsa_manifold.Ao_manifold  are calibrated to calibrate the model. 

The rise in temperature of the exhaust manifold is computed on a cycle basis. The time 

interval between two cycles is calculated using engine speed. Therefore, the equation can 

be re-written as follows. Tm_manifold(k+1) is used as the temperature of the exhaust manifold 

for the next cycle. The subscript k refers to kth cycle and k+1 refers to the next cycle of the 

kth cycle. 

_ ( 1) _ ( )

_ _ _ _ _ ( ) _ ( )

1

_ _ _ ( )

-
( ) ( - )

- ( - )

m manifold k m manifold k
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k k

sa manifold o manifold m manifold k atm

T T
m C h A T T

t t

h A T T





    


 

 

( 21 ) 

4.2.4 Turbocharger Thermal Model 

Turbocharger thermal model incorporates the connecting pipe connecting the exhaust 

manifold and turbocharger. Here, as the modeling is done for cold start condition, 

turbocharger is considered as thermal mass and the work produced is neglected. The 
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turbocharger model estimated the temperature of the exhaust gas at the outlet of the 

turbocharger as a function of temperature at the inlet of the turbocharger. Similar to the 

exhaust thermal model the equations used for turbocharger model are as follows. 

( ) _ _ ( ) _ ( ) _ _ _ ( ) _ ( )( ) ( )g k p g in turbo k out turbo k gs turbo i turbo g turbo k m turbo km C T T h A T T          

( 22 ) 

Where, Tin_turbo(k) is the temperature of the exhaust gas at the inlet of the turbocharger 

for kth cycle, Tout_turbo(k) is the temperature of the exhaust gas at the outlet of the 

turbocharger for kth cycle, hgs_turbo is the convective heat transfer coefficient between 

exhaust gas and the body of the turbocharger,  Ai_turbo is the inner surface area of the 

turbocharger, Tg_turbo(k) is the average temperature of the exhaust gas inside the 

turbocharger and Tm_turbo(k) is the temperature of the turbocharger for kth cycle.  

Again, similar to the exhaust manifold model, the gas temperature inside the 

turbocharger is estimated as the average of inlet and outlet temperature of the gas.  

_ ( ) _ ( )

_ ( )
2

in turbo k out turbo k

g turbo k

T T
T


    ( 23 ) 

The temperature rise of the turbocharger is calculated for the next cycle. 
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( 24 ) 

Where, mm_turbo is the mass of turbocharger, Cp_turbo heat capacity of the turbocharger, 

Tm_manifold is the temperature of the turbocharger, hsa_turbo is the convective heat transfer 

coefficient between the turbocharger body with surrounding, Ao_turbo is turbocharger 

outer surface area and Tatm is the ambient temperature. The subscript turbo stands for 

turbocharger. Hgs_turbo.Ai_turbo and has_turbo.Ao_turbo are calibrated to calibrate the model. 

4.2.5 Catalyst Thermal Model 

Unlike exhaust manifold and turbocharger model, catalyst model is modeled as a 

temperature gradient model. The catalyst model estimates the temperature of the outlet 

gas temperature and the catalyst body temperature as a function of temperature of the 

exhaust gases at the inlet of the catalyst.  The catalyst is divided into several sections as 

desired and temperature gradient of the catalyst can be estimated. The radial heat 

gradient is neglected. Also, the heat generated due to the exothermic reactions inside the 

catalyst is neglected.  
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Figure 26: Schematic of Catalyst 

Figure 26 shows a schematic of the Catalyst. The catalyst is divided into n number of parts 

for better accuracy in the calculations. The dotted green line represents the control 

volume for the catalyst which is divided by the vertical dotted black lines. The equation 

used for heat transfer between the exhaust gases and the catalyst body is as follows. 

_ _ ( , ) _ ( , ) _ _ _ ( , ) _ ( , )( ) ( )g p g in cat k n out cat k n gs cat i cat g cat k n m cat k nm C T T h A T T            

( 25 ) 

Here Tin_cat(k,n), Tout_cat(k,n), Tg(k,n) and Tm_cat(k,n) is the temperature of exhaust gases at the 

inlet, temperature of the exhaust gases at  the outlet, temperature of the exhaust gases 

inside the catalyst and temperature of the catalyst of the division n.  Tg_cat(k,n) can be 

approximated by the following equation. 

_ ( ) _ ( )

_ ( )
2

in cat k out cat k

g cat k

T T
T


     ( 26 ) 

The temperature at the outlet of the element is used as the temperature of the inlet of 

the next element as shown in equation (27). 
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_ ( , 1) _ ( , )in cat k n out cat k nT T       ( 27 ) 

As the catalyst is divided into n divisions, there would conductive heat transfer between 

the elements.  

 

Figure 27: Schematic of division of Catalyst 

As the catalyst is divided into n number of elements, heat transfer from the neighboring 

element is to be considered. A schematic of the same is shown in Figure 27. n-1 is the 

preceding neighboring element and n+1 is the succeeding neighboring element. 
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( 28 ) 

Where, mm_cat,n is the mass of the catalyst per element,  Cp_cat is the heat capacity of the 

catalyst, Tm_cat is the temperature of the catalyst, hgs_cat is the coefficient of convective 

heat transfer between exhaust gas and catalyst,  Ai_cat is the internal surface area in 

contact with the exhaust gas, has_cat is the coefficient of convective heat transfer between 
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the catalyst and surroundings, Ao_cat is the outer surface area of the catalyst, Across is the 

cross sectional area of the catalyst , K is the thermal conductivity of the catalyst and x is 

the center to center distance between two adjacent elements. 

A schematic of the equation (28) for an element is shown in Figure 28. The arrows pointing 

toward the element are the heat addition to the element and the ones pointing away 

from the element are the heat loss from the element. 

 

 

Figure 28: Schematic of Heat Transfer of a division of Catalyst 

 

4.2.5.1  Vapor Condensation 

Vapor condensation occurs when the air/ exhaust is a not able to sustain water vapor at 

the gas temperature as the gas temperature reduces due to convection to the catalyst 

and other components. The temperature at which first drop of dew is formed is called the 

dew point temperature.  This dew point temperature is used to calculate the temperature 

of vapor condensation and mass of vapor condensed. Depending on the temperature, the 

capacity to hold vapor changes. Depending on the temperature of the exhaust gas at the 
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inlet on outlet of each division, mass of water vapor condensed is calculated. For E10 fuel, 

the red dot on the graph (Figure 29) shows the temperature where the condensation 

starts (326 K), and no condensation will occur if the temperature of the exhaust gas is 

above the red dot temperature.  

 

Figure 29: Mixing Ratio vs Dew Point Curve at 1 bar total pressure 

Energy released due condensation is assumed to be transferred to the catalyst body and 

the equation used for heat transfer including vapor condensation is as follows. 
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Figure 30: Schematic of Heat Transfer of a division of Catalyst with Vapor Condensation 

Where, ṁH2O_cond is the mas of water vapor to be condensed converted into mass flow 

rate using engine speed, hfg_cond is the heat of condensation at the temperature at which 

the condensation is occurring. The value of hfg_cond is interpolated from the data curve 

shown in Figure 31. Figure 30 shows a schematic representation of equation (29) for an 

element of the catalyst.   

 

Figure 31: Latent Heat of Vaporization with Temperature 

The amount of water condensed is stored in the same element of the catalyst where the 

vapor was condensed. This changes the mass flow rate of the exhaust gases. 
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2 0 _g g H condm m m       ( 30 ) 

Where, ṁg is the mass flow rate of exhaust gas and ṁH2O_cond is the mass of water vapor 

condensed converted to mass flow rate. 

4.2.5.2  Re-evaporation of Condensed Water 

Once the water vapor is condensed inside the catalyst, the condensed water will start to 

evaporate as the temperature of the exhaust gas and the catalyst body temperature start 

to increase. Also, the exhaust gases flowing through the catalyst, should have the capacity 

to hold water which would depend on the temperature of the catalyst and mixing ratio 

(mass of vapor divided by dry air mass).  This capacity can be determined by using the 

dew point temperature correlation as shown in Figure 29. Depending on the vapor 

holding capacity, the amount of liquid water vaporized (mH2O_evap) is determined. If 

condensed water mass is more than the capacity of the exhaust gases to hold vapor, the 

mass of water vaporized will be capacity of the exhaust gas until it saturates. Otherwise, 

if the vapor holding capacity of the exhaust gases is more than the liquid water, all the 

mass of liquid water will evaporate.  

Two techniques of accommodating the heat transfer for the re-evaporation have been 

proposed. Using these techniques, the catalyst substrate temperature for next cycle is 

calculated. 

Method 1 
 
Once the amount of the condensed water inside the catalyst is known, temperature of 

the catalyst substrate is calculated using equation (29). If the mass to be evaporated is 

more than the capacity of holding vapor, equation (31) is used.  



www.manaraa.com

 

55 
 

2

_ _ _ ( 1, ) _ ( , ) _ _ ( , )

_ _

( - ) ( - )m cat p cat m cat k n m cat k n m cat p cat evap cat k n

H O evap fg evap

m C T T m C T T

m h

    

 
 

( 31) 

Where, mH2O_evap is the mass of water to be vaporized, Tevap is the temperature at which 

the water vapor evaporates, and hfg_evap is the heat of vaporization of water at Tevap.  

The above equation is derived considering the heat required to change the temperature 

of the catalyst if there was no re-evaporation would be same as the heat for increasing 

the temperature plus evaporation. As the mass of water to be evaporated is more than 

the capacity of the exhaust gas, the temperature of the catalyst would remain at Tevap 

until complete liquid water has been evaporated. 

If the amount of condensed mass be less than the capacity of the exhaust gases to hold 

vapor, equation (32) is used. 
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( 32 ) 

T´m_cat(k+1,n) would give the new catalyst substrate temperature for the next cycle. 

Method 2 

Once mass of water to be vaporized (mH2O_evap) is known, depending on the mass of liquid 

water and vapor holding capacity, the temperature of the catalyst substrate is for the next 

cycle is calculated using equation ( 33). 
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( 33 ) 

Where, ṁH2O_evap is the mass of water to be vaporized converted to flow rate using engine 

speed.   Figure 32 shows a schematic representation of the equation ( 33) for an element 

of the catalyst. 

 

Figure 32: Schematic of heat transfer of a division of catalyst with vapor re-evaporation 
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 Chapter 5 

 Correlations of Split Injection Parameters 

In this section, correlations of combustion parameters including CA50, CA00-10 and CA10-

90 with Start of first injection (SOI), End of second injection (EOI), Split Ratio (SR) and 

Spark Timing (SA) are given.   

 

Figure 33: Engine Speed Curve during Cold Start 

Figure 33 shows a typical engine speed curve during cold start of an engine. The initial 

phase during which the engine speed increases is called ramp up period. After ramp-up, 

comes the high speed idle where the engine speed is about 1250 RPM. High speed idle is 

used for faster heating of the catalyst. After the high speed idle, the engine goes to low 

speed idle where engine speed is around 800 RPM. The correlations for combustion 

parameters and exhaust gas temperature with split injection parameters are applicable 

for the high speed idle period during engine start up where the engine speed is around 

1250 RPM. Thus, all the experiments done for correlations were at 1250 RPM. 
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The tests done are quasi-cold start meaning the engine oil was allowed to be cooled at 

33°C and then with a preset throttle and spark time for the IMEP to be 250 KPa, engine 

was run at 1250 RPM and 1000 cycles were recorded from first cycle. All the parameters 

are calculated with two methods as discussed in Section 4.1.1. R2 is a statistical measure 

of closely the regression fit matches with the experimental data. R2 equal to 1 means 

perfect correlation and R2 equal to zero means no correlation.  

Root mean square error (RMSE) is also a statistical tool to measure of the error between 

the estimated and actual value. RMSE is calculated by the equation showed below. 

2

1

ˆ( )
n

t t

t

y y

RMSE
n








        ( 34 ) 

Where, ŷ is the predicted and y is the observed value for n different predictions. The unit 

of RMSE is same as the unit of the predicted or observed values. 

 CA50 correlation with Control Parameters 

Method A 

The correlation for CA50 calculated using Method A is shown in equation (35). PolyE value 

is neglected and combustion parameters are calculated by just using PolyC values. 

50 17.5 0.412 0.0720 71.4 0.126 0.00218

0.000350 0.628 0.00307 0.1668

0.00191 2.409

CA EOI SOI SR SA EOI SOI

EOI SOI EOI SR EOI SA SOI SR

SOI SA SR SA

           

           

     

 

( 35 ) 
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Figure 34: CA50 correlation fit using Method A 

The R2 for the correlation for CA50 using Method A was found out to be 0.94 and RMSE 

to be 3.2°CA. The correlation for CA50 consists of many terms as it can be seen from 

equation (35). Some of the terms are important for the correlation where as some of the 

terms are not significant. The significant terms could be found out using Pareto Chart. The 

Pareto Chart gives the significance of each independent variable and interaction variable 

for a dependent parameter. It can be observed that SA, EOI and SR are the important 

contributing factors towards CA50 correlation. 
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Figure 35: Pareto Chart for CA50 calculated using Method A for confidence interval of 
95% 

The Pareto Chart for CA50 calculated using Method A is given in Figure 35. The vertical 

line shows significance reference for confidence interval of 95%. Using the Pareto Chart 

and correlation coefficients, a reduced model for CA50 is developed as shown in the 

equation below. 

50 34.3 0.511 27.7 0.284 0.676 2.34CA EOI SR SA EOI SR SR SA              

( 36 ) 

The R2 for the reduced correlation for CA50 using Method A was found out to be 0.88 and 

RMSE to be 4.2°CA. Figure 36 shows the comparison between actual CA50 and the 

estimated CA50 using the reduced correlation using Method A. 
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Figure 36: Reduced CA50 correlation using Method A 

 

Method B 

The correlation for CA50 calculated using Method B is shown in equation (37). The 

combustion parameters are calculated by changing the interval for PolyE. 

50 17.7 0.419 0.0722 71 0.164 0.00209

0.000360 0.624 0.00301 0.1674

0.00195 2.463

CA EOI SOI SR SA EOI SOI

EOI SOI EOI SR EOI SA SOI SR

SOI SA SR SA

           

           

     

 

( 37 ) 
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Figure 37: CA50 correlation fit using Method B 

The R2 for the correlation for CA50 using Method B was found out to be 0.94 and RMSE 

to be 3.2°CA. Figure 37 shows a comparison between actual CA50 and estimated CA50 

values. Similar exercise for reducing the correlation terms, as shown for Method A, was 

repeated for Method B. The Pareto Chart for CA50 correlation using Method B is shown 

in Figure 38. It can be observed that SA, EOI and SR are the important contributing factors 

towards CA50 correlation. 

Using the Pareto Chart and correlation coefficients, a reduced model for CA50 is 

developed as shown in the equation below.  
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50 34.8 0.507 27.1 0.256 0.671 2.39CA EOI SR SA EOI SR SR SA                ( 38 ) 

 

Figure 38: Pareto Chart for CA50 calculated using Method B for confidence interval of 
95% 

The R2 for the reduced correlation for CA50 using Method B was found out to be 0.87 and 

RMSE to be 4.2°CA. Figure 39 shows the comparison between actual CA50 and the 

estimated CA50 using the reduced correlation using Method B. 
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Figure 39: Reduced CA50 correlation fit using Method B 

Comparison of Method A and Method B 

A comparison of Method A and Method B is shown in Figure 40. It can be seen from the 

figure that CA50 values calculated using Method A and CA50 values calculated using 

Method B correlated very well with each other (R2=1).    



www.manaraa.com

 

65 
 

 

Figure 40: CA50 Comparison of Method A and Method B 

 

 CA10-90 correlation with Control Parameters 

Method A 

The correlation for CA10-90 calculated using Method A is shown in equation (39). PolyE 

value is neglected and CA10-90 values are calculated by just using PolyC values.  

10 90 33.5 0.406 0.0025 54.7 1.196 0.00182

0.000149 0.456 0.01632 0.0359

0.00099 2.236

CA EOI SOI SR SA EOI EOI

EOI SOI EOI SR EOI SA SOI SR

SOI SA SR SA

            

           

     

( 39 ) 
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Figure 41: CA10-90 correlation fit using Method A 

The R2 for the correlation for CA10-90 using Method A was found out to be 0.85 and RMSE 

to be 2.8°CA. Figure 41 shows a comparison between actual CA10-90 and estimated CA10-

90 values. Again, Pareto Chart is used to check the significance of each independent and 

interaction variable for CA10-90 correlation. It can be observed that SA and EOI are the 

important contributing factors towards CA10-90 correlation. 
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Figure 42: Pareto Chart for CA10-90 calculated using Method A for confidence interval of 
95% 

Using the Pareto Chart and correlation coefficients, a reduced model for CA10-90 is 

reduced as shown in the equation below.  

10 90 31.04 0.622 45.5 1.417 0.477 0.01612

2.191

CA EOI SR SA EOI SR EOI SA

SR SA

             

  
 

( 40 ) 

The R2 for the reduced correlation for CA10-90 using Method B was found out to be 0.84 

and RMSE to be 2.7°CA. Figure 43 shows the comparison between actual CA10-90 and the 

estimated CA10-90 using the reduced correlation using Method A. 
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Figure 43: Reduced CA10-90 correlation fit using Method A 

 

Method B 

The correlation for CA10-90 calculated using Method B is shown in equation (41). The 

CA10-90 values are calculated by changing the interval for PolyE. 

10 90 32.6 0.474 0.0036 50.2 1.256 0.00028

0.000157 0.368 0.01563 0.0292

0.00069 2.248

CA EOI SOI SR SA EOI EOI

EOI SOI EOI SR EOI SA SOI SR

SOI SA SR SA

            

           

     

 

( 41 ) 

The R2 for the correlation for CA10-90 using Method B was found out to be 0.86 and RMSE 

to be 2.5°CA. Figure 44 shows a comparison between actual CA10-90 and estimated CA10-

90 values. 
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Figure 44: CA10-90 correlation fit using Method B 

Similar exercise for reducing the correlation terms was repeated for Method B. The Pareto 

Chart for CA10-90 correlation using Method B is shown in Figure 45. It can be observed 

that SA and EOI are the important contributing factors towards CA10-90 correlation. 

 

Figure 45: Pareto Chart for CA10-90 calculated using Method B for confidence interval of 
95% 
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Using the Pareto Chart and correlation coefficients, a reduced correlation for CA10-90 is 

developed as shown in the equation below.  

10 90 32.99 0.5436 42.7 1.438 0.372

0.01550 2.256

CA EOI SR SA EOI SR

EOI SA SR SA

          

     
 

( 42 )     

The R2 for the reduced correlation for CA10-90 using Method B was found out to be 0.86 

and RMSE to be 2.3°CA. Figure 46 shows the comparison between actual CA10-90 and the 

estimated CA10-90 using the reduced correlation using Method B. 

 

Figure 46: Reduced CA10-90 correlation fit using Method B 

Comparison of Method A and Method B 

A comparison of Method A and Method B is shown in Figure 47. It can be seen from the 

figure that CA10-90 values calculated using Method A and CA10-90 values calculated 

using Method B correlated very well with each other (R2=0.99).    
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Figure 47: CA10-90 Comparison of Method A and Method B 

 

 CA00-10 correlation with Control Parameters 

Method A 

The correlation for CA00-10 calculated using Method A is shown in equation (43). PolyE 

value is neglected and CA00-10 values are calculated by just using PolyC values.  

00 10 4.1 0.161 0.0637 50.8 0.690 0.00135

0.000036 0.414 0.00336 0.1351

0.00010 2.120

CA EOI SOI SR SA EOI EOI

EOI SOI EOI SR EOI SA SOI SR

SOI SA SR SA

            

            

    

 

( 43 ) 
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The R2 for the correlation for CA00-10 using Method A was found out to be 0.88 and RMSE 

to be 2.2°CA. Figure 48 shows a comparison between actual CA00-10 and estimated CA00-

10 values.  

 

Figure 48: CA00-10 correlation fit using Method A 

Again, Pareto Chart is used to check the significance of each independent and interaction 

variable for CA00-10 correlation (Figure 49). It can be observed that SA, SR and EOI are 

the important contributing factors towards CA00-10correlation. 
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Figure 49: Pareto Chart for CA00-10 calculated using Method A for confidence interval of 
95% 

Using the Pareto Chart and correlation coefficients, a reduced correlation for CA00-10 is 

developed as shown in the equation below.  

00 10 19.76 0.288 15.0 0.707 0.432 0.00476

2.008

CA EOI SR SA EOI SR EOI SA

SR SA

             

  
 

( 44 ) 

The R2 for the reduced correlation for CA00-10 using Method A was found out to be 0.75 

and RMSE to be 2.9°CA. Figure 50 shows the comparison between actual CA00-10 and the 

estimated CA00-10 using the reduced correlation using Method A. 
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Figure 50: Reduced CA00-10 correlation fit using Method A 

Method B 

The correlation for CA00-10 calculated using Method B is shown in equation (45). The 

CA00-10 values are calculated by changing the interval for PolyE. 

00 10 4.6 0.167 0.0622 49.4 0.675 0.00117

0.00004 0.403 0.00335 0.1317

0.00003 2.126

CA EOI SOI SR SA EOI EOI

EOI SOI EOI SR EOI SA SOI SR

SOI SA SR SA

            

           

     

( 45 ) 

The R2 for the correlation for CA00-10 using Method B was found out to be 0.88 and RMSE 

to be 2.2°CA. Figure 51 shows a comparison between actual CA00-10 and estimated CA00-

10 values. 
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Figure 51: CA00-10 correlation fit using Method B 

 

 

Figure 52: Pareto Chart for CA00-10 calculated using Method B for confidence interval of 
95% 

Similar exercise for reducing the correlation terms was repeated for Method B. The Pareto 

Chart for CA10-90 correlation using Method B is shown in Figure 52. It can be observed 
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that SA, SR and EOI are the important contributing factors towards CA00-10 correlation. 

Using the Pareto Chart and correlation coefficients, a reduced correlation for CA00-10 is 

developed as shown in the equation below.  

00 10 20.08 0.277 14.5 0.706 0.419 0.00474

2.005

CA EOI SR SA EOI SR EOI SA

SR SA

             

  
 

( 46 ) 

The R2 for the reduced correlation for CA00-10 using Method B was found out to be 0.75 

and RMSE to be 2.8CA. Figure 46 shows the comparison between actual CA00-10 and the 

estimated CA00-10 using the reduced correlation using Method B. 

 

Figure 53: Reduced CA00-10 correlation fit using Method B 

Comparison of Method A and Method B 
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A comparison of Method A and Method B is shown in Figure 54. It can be seen from the 

figure that CA10-90 values calculated using Method A and CA10-90 values calculated 

using Method B correlated very well with each other (R2=0.99).    

 

Figure 54: CA00-10 Comparison of Method A and Method B 

 

 Exhaust Gas Temperature Correlation 

The correlation for the average of exhaust gas temperature is made considering the CA50 

values as well. As seen from Figure 40 the CA50 values are same for Method A and 

Method B, thus, doesn’t matter which values are taken for the correlation. The correlation 

for average of 800 cycles for all the tests done is given below. 
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96 10.89 1.086 500 89.6 41.6 50 0.015

0.366 50 50 0.00871 1.94 0.267

0.1871 50 0.234 0.0495 0.0289 50

30.1 2.3

exhT EOI SOI SR SA CA EOI EOI

CA CA EOI SOI EOI SR EOI SA

EOI CA SOI SR SOI SA SOI CA

SR SA SR

             

           

           

     50 1.149 50CA SA CA   

 

( 47 ) 

The R2 for the correlation for Texh was found to be 0.96 and RMSE to be 22°C. Figure 51 

shows a comparison between actual Texh and estimated Texh values. 

 

Figure 55: Exhaust Temperature correlation fit 

Similar exercise of generating Pareto Chart is done to see the significance of each term 

for reducing the number of terms in the correlation. For the average of the exhaust gas 

temperature, from Figure 56, it can be seen that Spark Advance is the main contributor 

whereas, split ratio is the least contributor towards the correlation. 
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Figure 56: Pareto Chart for Exhaust Gas Temperature for confidence interval of 95% 

Using the Pareto Chart and correlation coefficients, a reduced correlation for Texh is shown 

in the equation below.  

888 162 5.12 3.54 50 28.6 2.88 50exhT SR SA CA SR SA SR CA              

 ( 48 ) 

The R2 for the reduced correlation for Texh using Method B was found out to be 0.92 and 

RMSE to be 25°C. Figure 57 shows the comparison between actual Texh and the estimated 

Texh using the reduced correlation. 

In Figure 57, an outlier can be seen which do not follow the reduced correlation. The 

deviation for that point for high level correlation is 45°C. The deviation increases to 120°C 

when the correlation terms are reduced.  
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Figure 57: Reduced Exhaust Temperature correlation fit 
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 Summary of Correlations 

A summary of the correlations with R2, RMSE and the major contributing factors for the 

correlation is shown in Table 6. All the R2 values are more than 0.80 except for reduced 

correlation for CA00-10.  

Table 6: Summary of R2 and RMSE for High Level and Reduced Correlations 

 

R2 RMSE 
Major 

Contributing 
Factors 

Method 
A 

Method 
B 

Method 
A 

Method 
B 

High Level 
Correlation 

CA50 0.94 0.94 3.2 (°CA) 3.2 (°CA) SA, EOI, SR 

CA10-90 0.85 0.86 2.8 (°CA) 2.5 (°CA) SA, SR, EOI 

CA00-10 0.88 0.88 2.2 (°CA) 2.2 (°CA) EOI, SA 

Texh 0.96 22 (°C) SA 

Reduced 
Correlation 

CA50 0.88 0.88 4.2 (°CA) 4.2 (°CA) SA, EOI, SR 

CA10-90 0.84 0.86 2.7 (°CA) 2.3 (°CA) SA, SR, EOI 

CA00-10 0.75 0.76 2.9 (°CA) 2.8 (°CA) EOI, SA 

Texh 0.92 25 (°C) SA 
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 Exhaust Thermal Model 

The exhaust thermal model had to be calibrated. As discussed earlier, the test procedure 

followed for data collection was by letting the engine cool down to the room temperature 

and start the engine with constant throttle angle to produces around 2.5 bar IMEP at 1250 

RPM as shown in Figure 58. It can be observed that IMEP values come close to 2.5 bar 

after about 100 cycles. The idea was to keep the IMEP and mass flow rate steady. All other 

engine controlling parameters were set to auto mode.  

 

Figure 58: Engine Speed and IMEP for first 8000 cycles 

 

 Exhaust Manifold Model 

The exhaust manifold is modeled as a lumped system. It estimates the exhaust manifold 

temperature as a function of exhaust manifold inlet temperature. The estimated exhaust 

manifold outlet temperature is compared with the measured values thermocouple 

located at the outlet of the exhaust manifold. The convective heat transfer coefficient is 

calibrated to match the estimated and measured values. 



www.manaraa.com

 

83 
 

 

Figure 59: Comparison of Measured and Estimated Exhaust Manifold Outlet 
Temperature 

The exhaust manifold body temperature can also be compared to measured values by the 

thermocouple mounted on the end of exhaust manifold. As this is modeled as lumped 

model, the temperature of the entire exhaust manifold is considered to be same for an 

instance i.e. no thermal gradient is considered. Figure 59 shows a comparison between 

estimated and measured exhaust gas temperature at the outlet of the exhaust manifold. 

The exhaust manifold inlet temperature is the average value of measured valued form 

the thermocouples measuring exhaust gas temperature near the exhaust valve. The 

measured temperature at the exhaust valve is usually lower than the temperature 

measured at the outlet of the exhaust manifold.  This happens mainly because of two 

reasons as below. 

1. The comparatively cooler oil flowing through the jackets nearby exhaust manifold to 

cool down the engine block affects the temperature measured by the thermocouple. 
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2. The thermocouple is not exposed to steady flow of exhaust gas at the valve. Thus, the 

measured value by the thermocouple will be the temperature maintained by both 

convective and radiation heat transfer. 

Therefore, to deal with such situation, a constant of 200°C is added to the average values 

of the thermocouple measurement at the exhaust valve. The exhaust manifold inlet 

temperature is expected to be replaced by the engine exhaust temperature values form 

the Air Charge model. 

 

Figure 60: Comparison of Measured and Estimated Exhaust Manifold Body Temperature 

A comparison between exhaust manifold measured and estimated body temperature is 

shown in Figure 60. Although, the exhaust gas temperature at the outlet of the exhaust 

manifold seems to reach a steady value, the exhaust manifold seems to increase even 

after first 8000 cycles. 
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 Turbocharger Model 

Turbocharger is also modeled as a lumped model. The heat lost in the work done by 

turbocharger during cold start is negligible and hence, turbocharger is considered just a 

thermal body. A thermocouple is mounted at the outlet of the turbocharger used to 

measure the exhaust gas temperature. These values are used to compare the estimated 

values to validate the model. The convective heat transfer coefficient is calibrated as a 

function of turbocharger body temperature. Figure 61 shows a comparison between the 

estimated and measured gas temperature values at the outlet of the turbocharger. Inlet 

temperature to the turbocharger is the outlet temperature of the exhaust manifold. The 

exhaust gas temperature at the outlet of the turbocharger seems to reach a steady value 

after 6000 cycles. The outlet temperature of the turbocharger will be treated as the inlet 

temperature for the catalyst model. 

 

Figure 61: Comparison of Measured and Estimated Turbocharger Outlet Temperature 
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 Catalyst Model 

As discussed earlier, the catalyst is modeled for thermal gradient including re-evaporation 

of the condensed vapor in the exhaust gas. This is important because of the possibility of 

earlier part of catalyst reaching light-off temperature whereas the temperature of later 

part is still below the catalyst light-off temperature. Note that the heat generated due to 

exothermic chemical reactions is not considered and only the thermal part is covered. 

Two methods are proposed in this thesis for estimating catalyst substrate temperature 

and catalyst outlet temperature. The results from Method 1 and Method B are shown in 

this section. 

Method 1 
 

In Method 1 of estimating the temperatures of catalyst, first catalyst substrate 

temperature is calculated neglecting water re-evaporation and then that temperature is 

used to calculate the new temperature with re-evaporation. Figure 62 shows a 

comparison between the measured and estimated gas temperature at the outlet of the 

catalyst for inlet temperature as shown in blue.  
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Figure 62: Comparison of Catalyst Outlet Measured and Estimated Temperature using 
Method 1 

As the catalyst is modeled for thermal transient, the catalyst is to be divided in n number 

of parts. For this study, the catalyst is divided into 25 parts as shown in Figure 63 and 

Figure 64. Figure 63 shows the curve for gas temperature at the outlet of every division 

of the catalyst. Figure 64 shows the substrate temperature of each part of catalyst has a 

different temperature. The curve for the exhaust gas temperature and catalyst substrate 

temperature flattens at around 326K. The dew point temperature of the exhaust gas for 

E10 fuel is 326K, and hence the condensation and re-evaporation can be observed in that 

region. 



www.manaraa.com

 

88 
 

 

Figure 63: Estimated Outlet Gas Temperature from each part of Catalyst Using Method 1 

 

Figure 64: Estimated Catalyst Substrate Temperature when Catalyst divided in 25 parts 
using Method 1 

 
Method 2 

In Method 2 of estimating the temperatures of catalyst, the mass of water to be 

evaporated and converted to mass flow rate using engine speed and the catalyst 
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substrate temperature for next cycle is determined. Similar to Method 1, a comparison 

between the measured and estimated gas temperature at the outlet of the catalyst for 

inlet temperature is shown in Figure 65. 

 

Figure 65: Comparison of Catalyst Outlet Measured and Estimated Temperature using 
Method 2 

The catalyst is divided into 25 parts and the gas temperature at the outlet of every division 

and catalyst substrate temperature of each part can be seen in Figure 66 and Figure 67 

respectively. Again, the flattening of the exhaust gas temperature can be seen at 326K 

because of the condensation and re-evaporation of water vapor. 
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Figure 66: Estimated Outlet Gas Temperature from each part of Catalyst Using Method 2 

 

Figure 67: Estimated Catalyst Substrate Temperature divided in 25 parts using Method 2 
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 Summary of Catalyst Model 

The axial temperature distribution of the exhaust gas and substrate temperature is higher 

at the beginning of the cold start but tends to narrow down in later cycles. This shows the 

temperature of the exhaust gas as well as catalyst comes to steady state temperature 

value and any axial temperature distribution can be hardly seen. 

The temperature curves using Method 2 looks smooth than the temperature curves using 

Method 1. This is because a single equation is used for in Method 2 whereas, an additional 

step is involved in calculating the catalyst substrate. The extra step of assuming same 

energy transfer with and without re-evaporation, induces a small dip in the exhaust gas 

temperature because of latent heat of vaporization, which is physically not possible.  

Currently the catalyst model is calibrated for 25 divisions. If the same calibration is used 

for lesser number of divisions, the drop in the exhaust gas temperature across every 

element will be huge. If the temperature drop is huge, the amount of vapor condensed 

would also be huge as the amount of condensed vapor is calculated using inlet and outlet 

temperature of each element. A large amount of condensed water leads to large amount 

of energy released due to condensation. Re-evaporation also works in similar technique. 

The large amount of energy transfer to/ from the catalyst body would lead to sudden 

increase and drop in catalyst body temperature. This behavior of catalyst temperature is 

not expected physically. Hence the model needs different calibration values if to be used 

for lesser number of catalyst divisions.  

Biot’s number is a dimensionless quantity used to give a comparison between convective 

and conductive heat transfer. 
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'
conductive

Biot s

convective

R
N

R
       ( 49 ) 

Where, Rconvective and Rconductive are the convective and conductive resistances respectively. 

Rconvective can be calculated as below. 

1

.
convectiveR

h A
      ( 50 ) 

Where, h is the coefficient of convective heat transfer and A is the surface are in contact. 

And Rconductive can be calculated as below. 

.
conductive

c

x
R

k A
     ( 51 ) 

Where, k is the coefficient of conductive heat transfer and Ac is the cross sectional and x 

is the length.  

For the current calibration for 25 divisions, the Biot’s number is 1.2. This indicates that 

both conduction and convection heat transfer play important role in the determining the 

temperature of the catalyst substrate. 
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 Chapter 6 

Summary and Conclusion 

6.1 Summary 

In this thesis, correlations between split injection parameters meaning, one injection in 

intake and another in compression, with combustion parameters and engine exhaust 

temperature including ignition delay, CA50, burn duration are shown for 1250 RPM and 

2.5 bar IMEP. These correlations can be later used for control purposes. The control 

parameters included in the correlation are SOI. EOI, SR and SA.   

This thesis also comprises of exhaust thermal model where exhaust downstream 

components like exhaust manifold, turbocharger and catalyst are modeled. Exhaust 

Manifold and Turbocharger are modeled as lumped model whereas the catalyst model 

has been modeled as a thermal gradient model using two different techniques. 

Thermocouples mounted on exhaust manifold are used to measure exhaust manifold 

body temperature and exhaust manifold outlet gas temperature, another thermocouple 

is used to measure the outlet gas temperature from the turbocharger and a few more 

thermocouples on the catalyst to measure the gas temperature. These thermocouple 

readings are used to calibrate the exhaust thermal model. 

6.2 Conclusion 

Conclusions that can be made for the split injection correlations. 

 Start of injection timing for first injection (SOI) does not have a significant role in 

estimating combustion parameters and exhaust temperature. This may be 
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because extremely retarded spark timing, which allow enough time for 

vaporization and mixing of fuel with air.  

 CA50 (R2=0. 88) and CA10-90 (R2=0. 84) have better correlation fit than CA00-10 

(R2=0. 75) which can be seen from the R-squared values. More tests can be done 

to fine tune the correlations and improve R-squared values. 

 Spark Timing, EOI and SR are significant factors in CA50 correlations. This can be 

seen from the Pareto Charts. Standardized effect values for Spark Timing, EOI and 

SR are 14.4, 6.5 and 5.7 respectively for Method A and 14.5, 6.6 and 5.8 

respectively for Method B for the reference significance value of 2.07. 

 Spark Timing, SR and EOI are significant factors in CA10-90 correlations. This can 

be seen from the Pareto Charts. Standardized effect values for EOI and SA are 9.0 

and 4.7 respectively for Method A and 7.5 and 5.3 respectively for Method B for 

the reference significance value of 2.07. Standardized effect values for interaction 

terms of EOIxSR and SA*SR are 3.2 and 4.2 respectively for Method A and 2.4 and 

3.6 respectively for Method B. 

 Similarly, from the Pareto Chart for CA00-10 shows that EOI, SR and Spark Timing 

are significant in the correlation. Standardized effect values for Spark Timing, SR 

and EOI are 6.9, 6.0 and 4.5 respectively for Method A and 7.5, 6.5 and 4.5 

respectively for Method B for the reference significance value of 2.07. 

 Spark Timing play an important role in estimating the exhaust temperature. 

Standardized effect values for Spark Timing is 4.9 for the reference significance 

value of 2.07. 

 The two techniques shown in calculating the combustion parameters gives similar 

results. The model to model comparison gives R2>0.99 for CA50, CA10-90 and 

CA00-10 correlations. Therefore, either of the technique for calculation of 

combustion parameters can be used.  
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 The correlations are only good for 1250 RPM engine speed. Engine runs at 1250 

RPM during the high speed idle period for a cold start. 

Conclusions that can be made for Exhaust Thermal Model are: 

 Condensation of water vapor in exhaust plays an important role in defining the 

temperature curve of the catalyst. Hence, should not be neglected. This can be 

seen from the flattening of temperature curve at dew point temperature of 326K. 

 Both techniques for re-evaporation calculation (Method 1 and Method 2) shown 

to model the catalyst temperatures gives a good match with the experimental 

data proving that either of the method can be used in modeling catalyst 

temperatures. 

 Method 2 for handling water vapor is better. It has simpler equation and gives 

smooth temperature curves. Whereas, a small dip in the gas temperature can be 

seen while using Method 1. 

 The heat generated due to exothermic reactions in the catalyst is neglected in the 

catalyst model. In reality, the temperature values at various parts of the catalyst 

may be higher than the modeled temperature values. These catalyst temperatures 

at different parts of the catalyst might be even higher than the inlet gas 

temperature.   

 For the current calibration for 25 divisions, the Biot’s number is 1.2. This indicates 

that both conduction and convection heat transfer play important role in the 

determining the catalyst substrate temperature 
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6.3 Suggestions for Future Work 

Following suggestion can be taken into consideration to improve the split injection 

correlation and exhaust thermal model work: 

 More testing can be done to fine tune the correlations. Now that it is known SOI 

does not play a significant role in correlations, testing can be done with more focus 

on SR, SA and EOI. 

 Emissions analyzer was unavailable during this work. Correlations can be made for 

emissions as well with the split injection parameters once the emission bench 

setup is complete. 

 The exhaust manifold model and turbocharger model are now modeled as lumped 

model. These can be changed to heat distributed model for better results. 

 Heat generated by exothermic reactions in the catalyst is neglected for the work 

in this thesis. This heat can be taken into consideration for improved temperature 

curve.  

 As explained in Section 5.9, the catalyst model can used with lesser divisions by 

changing the calibrated parameter values for control purposes. 
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 Chapter 7 

7.1 Spark Plug Fouling Background and Literature 

Review 

There has always been a problem of fouling of spark plugs during cold start. According to 

Greenshields [25], there are three types of fouling. 1) Short circuit due to bridging of gap 

between the electrodes which may be caused due to increase of engine operation output, 

which fuses deposits laid on it or due any other engine part like exhaust valve or piston 

crown. 2) Decrease of shunt resistance due deposition on ceramic core which provides an 

alternative path at elevated temperatures. 3) Corona discharge over the whole ceramic 

of the spark plug due to presence of conductive material distributed discontinuously over 

the surface.  

Jawad and Sobolak [27] studied the effects of cold temperature on spark plug 

performance. They soaked the vehicle with an engine which was prepped to the condition 

as seen at the assembly plan in cold camber maintained at 20 °C. After soaking the engine 

for 8 hours in the cold chamber, the test procedure involved starting the engine, shifting 

the transmission into drive and running the engine at full throttle for 20 secs. Then the 

engine was allowed to soak for another 15 mins and the same procedure was followed 

until the spark plug gets fouled. Table 7 shows the results for the tests and it can be 

concluded that additive enriched fuel plays a significant role to combat cold weather 

spark plug fouling. 
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Table 7: Fuel properties versus quantity of starts before the spark plug fouled, data 
extracted from [27] 

Fuel 
Number 

Fuel ID RVP (psi) Ethanol % 
Engine fouled at 
test number 

1 BASE 12.5 0 40 

2 RVP High 15.0 0 45 

3 RVP Low 10.0 0 43 

4 Ethanol 12.5 10 60 

5 Additive 12.5 0 65 

Several works have been done to use ion probe as tool to study combustion. Ion signal 

has been proven to be a good in-cylinder signal to be used to detect misfire and predict 

knock due to Pre-Ignition (P.I.) [29]. NOx generation is also studied using ion signal and 

results shows that ion has good potential in predicting NOx generation [30]. The ion signal 

shows characteristics which seems related to the combustion happening inside the 

cylinder [28] which is also explained in the next section of this Chapter. Henein et al., [28], 

performed a study with different ion probes and made the following observations.   

 Probe length influences the characteristics of the ion signal, short length probes 

give signal with more peaks, indicative of flames and combustion whereas, longer 

probes give signals with less ion peaks. 

 Soot deposits on the probe reduce the resistance between the ion probe 

electrodes and produce a zero shift. 

 The first combustion peak represents the rate of heat release and the second and 

third (if any) are related to mixing and diffusion-controlled combustion. 

There are mainly two sources of the ion current in an IC engine i.e. chemi-ionization and 

thermal ionization [31]. For the chemi-ionization, CH radical is responsible for the ion 

current in a gasoline engine and the ion formation reactions are as follows, 
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CH O CHO e       ( 52 ) 

Above reaction is competitively slow as compared to the following reactions, 

2 3CHO H O H O CO        ( 53 ) 

CHO NO NO HCO        ( 54 ) 

2 2 3 3CH C H C H e        ( 55 ) 

In lean and slightly rich conditions, reaction (53) is dominant whereas reaction (55) is 

dominant during rich and sooty conditions. The ions recombination reaction is: 

3 2H O e H OH        ( 56 ) 

For thermal ionization, formation of ions at high temperature is mainly due to the 

following reaction [32]: 

NO M NO e M        ( 57 ) 

The ions recombination reaction is: 
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NO e N O         ( 58 ) 

7.2 Ideal Ion Waveform 

An ideal ion curve sensed from the spark plug with a typical in-cylinder pressure curve is 

shown in Figure 68. When a coil is connected to a spark plug, the secondary voltage of 

the ignition coil must rise enough to break the potential between the spark plug known 

as breakdown voltage. The amount of time taken by the ignition coil to charge until the 

breakdown voltage is known as dwell. While measuring the ion current using the spark 

plug, it is being observed that the ion signal is interfered at the start of dwell and shows 

as spike on the ion signal. Figure 68 shows an ideal ion curve with single spark event.  

 

Figure 68: "Ideal" Ion Curve 

After the interference from the dwell, an ideal waveform of a clean plug, should drop to 

0 volts and continue to be 0 volts until spark occurs. A small hump in the waveform 

indicates spark event as seen in Figure 68. When, not enough power remains in the 
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ignition coil, spark ends, and the remaining power is rung out. This can be detected by a 

second peak at the end of spark. The rest of the curve indicates the combustion 

happening inside the combustion chamber.   

7.3 Literature Review Summary 

A lot of work is done to prevent fouling of spark plug with either using additives in the 

fuel or using different calibrations on the engine until the vehicle reaches the customers. 

All the studies focusing on reduction of soot formation on the spark plug to improve 

engine startability involves visual inspection of the spark plug. This requires physically 

removing the spark plug which takes a lot of time and human effort.  

Although ion probe is widely used in combustion analysis, PI determination and NOx 

formation, it has not been used to determine the condition of a spark plug. The principle 

of zero shift of the ion current because of soot formation on the electrodes, is used to 

determine the shunt resistance of the spark plug. 
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 Chapter 8 

8.1 Experimental Setup 

A 2.0L four cylinder Direct-Injection (DI) engine on Lincoln MKC was used to run tests to 

measure the spark plug fouling. Spark plug was used as a probe to measure the ion current 

from the cylinder. Engine geometry are shown in Table 8.  

Table 8: 2L Ford Ecoboost Engine Specifications on Lincoln MKC 

Bore 87.5 mm 

Stroke 83.1 mm 

Connecting Rod Length 155.86 mm 

Wrist Pin Offset 0.6 mm  

Compression Ratio 9.3:1 

Engine Displacement  1.999 L 

Number of Cylinders 4 

Firing Order  1-3-4-2 
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Figure 69: 2L DI engine mounted with modified ignition coils connected to ion box 

Figure 69 shows the experimental setup on the vehicle to measure the shunt resistance 

of all the four spark plugs. Ignition coils on the engine are modified to take a secondary 

negative output to measure the ion current. The ion current is typically around 200 µA or 

less. This signal is fed to the Ion Box installed under the hood of the vehicle. Initially the 

secondary negative wires were routed together which led to noise issue in the signal. 

Separated wires resulted in better ion signal quality. The ion box uses a DC to DC converter 

is used for greater stability and higher voltage capacity. Also, the value of R1 can be 

modified for desired sensitivity (Figure 70). 

Ion Box 

Signals to 

PicoScope 

Signals from Ionization Coils  
(Secondary Negative) 
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Figure 70: Ion Measurement Principle 

 Two different ion boxes were present one with 250 KΩ resistance as R1 and the other 

with 1 MΩ resistance on the other box. The 250 KΩ ion box outputs the signal with a 

voltage range of 0 to 5V and the 1 MΩ ion box outputs signal with a range of 0 to 10V.  

A PicoScope 4824 [33] was used to measure the ion signal from the ion box. Sampling rate 

was set up to 20 KS/s and sometimes 30 KS/s. This sampling rate range was defined for 

better computation speed on the tool and to capture minute details on the ion signal.  

 

Figure 71: PicoScope for data logging [34] 
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ATI Vision [22] software was used as the ECU interface to control the engine calibration 

parameters including spark timing (SA), mass of fuel injected (mf), and split injection 

parameters like SOI, EOI and SR. The vehicle was tested in parking lot and in the cold 

chamber with temperature of 0°F.  The engine was calibrated to force spark plug fouling. 

Also, ATI is important for logging calibration parameters data which can be plotted by the 

tool for proper interpretation of results.   

ATI EDAQ (Figure 72) can also be used to capture ion data simultaneously. The signal from 

the ion conditioning box is split up, one goes to PicoScope and other goes to ATI EDAQ. 

The reason PicoScope is used is because of its higher sampling rate which allows the 

capture of minute details of the ion signal, which EDAQ fails to capture. The purpose of 

ATI EDAQ will be explained in Section 9.3.2. 

 

Figure 72: ATI EDAQ to capture ion signals [35] 
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 Chapter 9 

 Plug Fouling Algorithm 

9.1 Overview 

Ion signal was recorded using PicoScope and calibration parameters were recorded using 

ATI Vision. For any test done to measure the spark plug fouling, the calibrator or the 

person doing the test must start recording data on PicoScope and ATI Vision first and then 

start the engine. The tool will not work correctly if data logging is started while the engine 

is already running. The tool will also work if ATI Vision is not available for logging the data. 

The use the tool, a simple four following steps are to be followed. 

1. Start logging data in ATI Vision and PicoScope 

2. Start the cold start test 

3. Save the logged files in Matlab file format (.m) in a same folder 

4. Run the plug fouling diagnostic tool 

The algorithm on which the tool works is shown in Figure 73. 
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Figure 73: Algorithm for plug fouling diagnostic tool 
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9.2 Filter and Analyze PicoScope Data 

The spark plug diagnostic tool works for number of cylinders up to 8 but, it is not 

necessary that there are always 8 cylinders connected to the PicoScope. The tool looks 

for number of active cylinders.   

PicoScope sometimes have missing values while recording the data. This happens when 

the ion signal shoots up like in case of interference from start of dwell and interference 

from coil ringing. The value is shown as infinite in the signal; hence, it becomes difficult 

for Matlab to recognize these values. Thus, these values are to be replaced by its 

neighboring values. 

 

Figure 74: Ion Signal showing spikes due to interference due to start of dwell and coil 
ringing (red dots) 

The data recorded in PicoScope is time based and not crank angle based. Therefore, each 

cycle must be separated out from the time based continuous signal. Start of dwell is used 

as an indication for cycle start and the cycle continues until next start of well spike is 
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recorded. For a 1 MΩ ion box, 7.5V  is used as a threshold for separating out noise from 

the spike due to interference due to start of dwell and coil ringing. Similarly, 3.6V is used 

as a threshold for 250 KΩ ion box.  

Figure 74 shows a sample of ion signal. The x-axis is the time stamp and the y-axis is the 

voltage value recorded in the PicoScope. The red dots show the spikes due to interference 

of start of dwell and coil ringing. Multiple spikes in first cycle shows spark restrikes which 

are sometimes used for starting the engine.   

9.3 Alignment of PicoScope and ATI Vison time stamp 

PicoScope and ATI Vision for data logging is started at different times. Although, these 

two are started nearly simultaneously before starting the tests, there is still a difference 

in both of their time stamps. These time stamps are to be aligned to match the Ion data 

with the ATI parameter data. This alignment is done via a parameter called 

“SPK_TPU_CNT” recorded in ATI. If “SPK_TPU_CNT” is not found, alignment is done via 

ATI EDAQ data.  

9.3.1  Alignment via SPK_TPU_CNT 

ATI Vision has a parameter called “SPK_TPU_CNT” which keeps a count number of spark 

events and the counter resets after 256 counts. The technique of alignment is matching 

the time of the spark count on counter with the first spike due to start of dwell on the ion 

signal. Because of the low sampling speed of the ATI, sometimes, 1st count on the counter 

is not recorded. Equation (59) is used to estimate the time of 1st count on the counter. It 

can be seen from Figure 75 that first peak on PicoScope is 9.8 sec whereas first count on 

the Spark Count is 3.4 sec. Figure 76 shows PicoScope time for first peak match with the 

ATI first count. 
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t t
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      ( 59 ) 

Where, tspk(1)  is time for 1st spark on spark counter, tspk(0) is time for last 0 count on the 

spark counter, tspk(n) is time for first non-zero count on the spark counter and n is first non-

zero value on the spark counter 

 

Figure 75: PicoScope and ATI data before alignment 
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Figure 76: PicoScope and ATI data after alignment 

 

9.3.2 Alignment via ATI EDAQ 

The signal form the ion box is split up into two channels. One goes to PicoScope and the 

other goes to ATI EDAQ. ATI EDAQ is also used for data acquisition, but, the problem with 

using EDAQ is low sampling speed. Sampling rate slower than 20 KS/s is not preferred as 

it miss out a few intricate details of the ion signals like restrikes, diffusion flame, etc. 

Similar to separating out spikes in PicoScope data, spikes in ATI vision are detected for 

voltage more than 0.5V. Time at the first spike in ATI Vision and time at the first spike in 

PicoScope is noted and time stamp is aligned accordingly.  It can be seen from Figure 77 

that first peak on PicoScope is 17.8 sec whereas first peak on ATI EDAQ is 6.5 sec. Figure 

78 shows PicoScope time of first peak match with the ATI EDAQ first peak. 
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Figure 77: PicoScope and ATI data before alignment 
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Figure 78: PicoScope and ATI data after alignment 

9.4 Engine Speed Estimation 

Ion data is logged as time-based data and not crank angle-based data. Each cycle must be 

separated out for fouling calculation for every cycle. Hence, engine speed as a parameter 

is used to separate out the cycles from each other.  
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Figure 79: Ion Signal with Engine Speed 

As shown in the Figure 79, cycles are well separated when then engine speed is slow and 

gets close to each other as the speed increases. Hence separating cycles out gets difficult. 

As seen in the figure in red, small spikes are seen between two consecutive cycles, are 

the cross talk between the cylinders. The amplitude of the cross-talk increases as the 

engine speed increases. Sometimes, the cross talks are as high as the threshold value set 

for separating out the spikes due to interference due to dwell and coil ringing. A look up 

was made to omit all the spikes which comes into a certain region of the cycle. This also 

takes care of the spark restrikes. This region of omitting spikes is based on engine speed. 

Hence engine speed plays a very important role in computing plug fouling. 
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Figure 80: Actual Engine Speed (left) and Estimated Engine Speed (right) 

 If engine speed data from ATI is not available, engine speed is estimated. No engine speed 

data case will happen if the tool is to be used without ATI system installed on the vehicle. 

This would be the case if the tool is to be used by a spark plug supplier who wouldn’t have 

access to ATI and only have PicoScope. Figure 80 shows a comparison between actual 

engine speed graph vs estimate engine speed graph. Engine speed is estimated using 

frequency of spikes in ion signal. 

 Finally cycles form a continuous ion data is separated out to measure plug fouling for 

each cycle. Figure 81 shows raw ion signal indicating all the spikes due to interference 

from dwell, coil ringing and restrikes. Whereas, Figure 82 shows same ion signal indicating 

only first spike due to interference from start of dwell after time stamp alignment.  
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Figure 81: Sample ion signal with all spikes 

 

Figure 82: Sample ion signal with only start of dwell spikes separating out cycles after 
time alignment 
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9.5 Fouling Calculations 

Spark plug fouling is measured by calculating shunt resistance over the entire conical 

surface of the ceramic insulator. A biased voltage of 180 volts is applied to the spark plug, 

as explained in Chapter 8. This shunt resistance is calculated based on the following 

equation. 

( 1)scale bias
shunt sen

offset

X V
R R

V


        ( 60 ) 

Where, Rshunt is the shunt resistance value of the spark plug, Rsen is sensitivity resistance 

value, Xscale is the scale factor, Vbias is bias voltage and Voffest is offset voltage. 

Voffest is calculated using the ion signal from the engine. As explained in Chapter 8, the 

floor voltage should be ideally zero for no fouling condition. Once the spark plug starts to 

foul, the floor voltage starts to rise from zero. A portion of the ion curve is filtered for 

cross talks (noise). The values are rearranged in an increasing order and a mean value of 

first 90% of that portion is taken as shown in Figure 83. 

The program plots shunt resistance values in different colors based on perceived risk of 

misfire.  These limits can be changed in the software but as currently configured they are: 

1. >800 MΩ - No Risk – Shown in green color 

2. 1-800 MΩ - Minor Risk – Shown in orange color 

3. <1 MΩ - High Risk – Shown in red color 
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Figure 83: Ion signal showing interval for plug fouling computation 

  

9.6 Diffusion Flame 

Diffusion flame can be described as the burning of liquid fuel in the cylinder. Diffusion 

flame can also be studied using ion data from the combustion chamber. As discussed 

earlier ions are nothing but charges formed due to combustion and thermal effect. If a 

rise in ion signal is noticed late in the combustion cycle after the ion signal dips down to 

zero, it indicates that diffusion flame burning is occurring. The diffusion burning is also 

optically verified using an optical engine at APS labs Michigan Technological University.  

One Cycle (100%) 

Fouling Floor (75-97%) 

Cross talk 
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Similar to fouling measurement, diffusion flame is quantified by selecting a portion of 

curve where diffusion flame is expected, and the ion values are integrated over that 

portion of the ion signal. The interval for selecting the portion of the ion signal is 

calibrated with engine speed. A look up table for start of the interval and end of the 

interval is made for various engine speeds.  

 
Figure 84: Diffusion flame calculations 

Figure 84 shows the interval for diffusion flame calculation shown in the green color. If 

the spark plug is fouled, the area under the curve will tend to increase because of rise in 

floor voltage due to fouling. Thus, the floor voltage needs to be subtracted from the ion 

signal before computing the diffusion flame. 

( 61 )  

Determine area under ION signal in the 
diffusion flame region 

න ሺ𝐼𝑂𝑁 − 𝑓𝑜𝑢𝑙𝑖𝑛𝑔 𝑓𝑙𝑜𝑜𝑟ሻ𝑑𝑡
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑒𝑛𝑑

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑠𝑡𝑎𝑟𝑡

 

𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝐹𝑙𝑎𝑚𝑒 =  න ሺ𝐼𝑂𝑁 − 𝑓𝑜𝑢𝑙𝑖𝑛𝑔 𝑓𝑙𝑜𝑜𝑟ሻ𝑑𝑡
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑒𝑛𝑑

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑠𝑡𝑎𝑟𝑡
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 Chapter 10 

 Spark Plug Fouling Diagnostic Tool 

10.1 GUI 

A graphical user interface was developed for ease of usage of the diagnostic tool. User 

must enter the address of the folder where the PicoScope and ATI files are stored and the 

folder where he/she wants to store the result plots. Toggle switches for a few basic plots 

including for Diffusion Flame, SOI, EOI, SR and SA are added.  

 

Figure 85: GUI for the plug fouling diagnostic tool 
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An option of additional plots is also given, where in after clicking for additional plots it’ll 

ask you for the number of additional plots and the name of the ATI parameters for which 

fouling is to be plotted against. 

 

Figure 86: GUI asking for ATI parameters to be added 

Once everything is toggled and filled, hit run to display the results. Depending on the 

number of plots added, plots will be generated for each cylinder with fouling and against 

all the parameters added. Figure 87 shows a plot of ion curve with spark plug shunt 

resistance graph for cylinder number 2 of a 4-cylinder engine. 
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Figure 87: Shunt resistance curve with ion signal 

If diffusion flame toggle is switched on, a diffusion plot will be added to the shunt 

resistance plot with the ion graph. 
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Figure 88: Shunt resistance plot with diffusion flame (in blue) 

Figure 88 shows a typical graph for a three-consecutive start marshalling test. Figure 89 

shows engine speed vs. spark plug shunt resistance for our cylinders for a three-start 

marshalling test. 
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Figure 89: Engine speed from ATI with plug shunt resistance values of all 4 active 
cylinders 

 

10.2 Fouling Cases 

As the soot deposits on the ceramic insulator start to build up, the floor voltage of the ion 

signal starts to increase. This can be seen from Figure 90; Top left figure shows ion curve 

and shunt resistance values with no fouling (as shown in green markers) of the plug.  Top 

right figure shows the ion curve behavior when soot deposition starts, and the shunt 

resistance starts to decrease but he plugs is at minor risk. Bottom left shows the ion signal 

with floor voltage rising high which puts the spark plug towards high risk condition. 

Finally, bottom right figure shows the worst-case condition.  The floor voltage climbs up 
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and saturates at 10 volts. The inverted peaks are the time interval between the peak due 

to interference of start of dwell and coil ringing. Because the floor voltage being so high, 

the actual spikes due to start of dwell and coil ringing are not seen. 

 

Figure 90: Various plug fouling cases 

10.3 Adaptation to Worst Case Fouling 

If the ion signal saturates if spark plug fouling is high enough then, it becomes difficult to 

separate out the cycles form each other.  
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Figure 91: Worst Case Fouling 

Hence, if the average of the ion signal is more than 6V, the whole ion signal is subtracted 

from 11V to invert the signal. The inverted peaks are then used as a parameter to separate 

out the cycles. 

 

Figure 92: Inverted Signal 
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10.4 Uncertainty Analysis 

Ion current is the only measurement done to estimate the shunt resistance of the spark 

plug. Any uncertainty in measuring the ion voltage would propagate to give uncertainty 

in the shunt resistance values. Therefore, it is important to know uncertainty in the 

measurement of the ion signal would cause how much deviation in the estimated shunt 

resistance value. 

The uncertainty calculation is done by using Engineering Equation Solver (EES) software. 

Uncertainty is calculated by, 

2 2( )
iY X

i i

dY
U U

dX
       ( 62 ) 

Where Xi are the measured parameters with uncertainty UXi.  

Here, as only ion voltage is measured using an ion probe, assuming 10% uncertainty in 

measurement of ion voltage would result in 10% uncertainty of the estimated spark plug 

shunt resistance. 
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 Chapter 11 

11.1 Summary 

A spark plug fouling tool using in-cylinder ion signal was developed. The tool outputs the 

ion plug fouling values against any parameter recorded in ATI. If ATI is not available and 

only PicoScope is used, engine speed is estimated from the ion signal. Engine speed is 

used to separate out cycles. Diffusion flame is also calculated using the ion curve by 

integrating the curve in a certain interval. 

The tool can handle maximum of 8 cylinder. Ion signal from each cylinder is taken and the 

plug fouling for individual cylinder is measured. The tool can used as a standalone 

application without giving away the source code. This function of standalone analysis can 

be used by spark plug suppliers or anyone without access to Matlab. This tool is expected 

to be used by calibrators and personnel studying the parameters which affect plug 

fouling. 

11.2 Suggestions for Future Work 

Following suggestions can be taken into consideration to improve and study spark plug 

fouling. 

 The tool can be extended to more than 8 cylinders if required. The PicoScope has 

8 channels, so multiple PicoScopes can be used if required. 

 To study the spark plug fouling, determine the injection timing and spark plug 

timing regimen for cold start and marshalling tests with least effect on spark plug 

fouling, best catalyst heating and least adverse drivability effects. 
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 Appendix A. Experimental Data 

A.1. E10 Fuel Properties 
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A.2. Split Injection Test Matrix 

Table A. 1: Split Injection Test Matrix 

Test# 
EOI 

(CAD 
BTDC) 

SOI 
(CAD 

BTDC) 
SR (-) 

SA 
(CAD 

ATDC) 

IMEP 
(bar) 

SD_IMEP 
(bar) 

TurboIN 
(°C) 

IVO IVC EVO EVC 

Test5 40 180 0.4 5 2.63 0.3 992.5 -349 -113 114 -352 

Test6 70 180 0.4 5 2.53 0.5 1019.4 -349 -113 114 -352 

Test7 20 180 0.4 15 2.66 0.4 1083.3 -349 -113 114 -352 

Test8 40 180 0.4 15 2.65 0.3 1080.4 -349 -113 114 -352 

Test9 70 180 0.4 15 2.59 0.4 1133.5 -349 -113 114 -352 

Test10 20 180 0.7 5 2.40 0.5 966.5 -349 -113 114 -352 

Test11 20 180 0.7 5 2.73 0.4 951.3 -349 -113 114 -352 

Test12 40 180 0.7 5 2.44 0.5 961.8 -349 -113 114 -352 

Test13 40 180 0.7 5 2.46 0.5 959.3 -349 -113 114 -352 

Test14 70 180 0.7 5 2.59 0.4 964.7 -349 -113 114 -352 

Test15 20 180 0.7 15 2.68 0.9 1131.9 -349 -113 114 -352 

Test16 40 180 0.7 15 2.72 1.1 1158.8 -349 -113 114 -352 

Test17 70 180 0.7 15 2.38 0.6 1151.6 -349 -113 114 -352 

Test18 20 340 0.4 5 2.76 0.5 1005.3 -349 -113 114 -352 

Test20 70 340 0.4 5 2.67 0.8 1024.6 -349 -113 114 -352 

Test21 70 340 0.4 5 2.97 0.5 1017.9 -349 -113 114 -352 

Test22 20 340 0.4 15 2.70 0.4 1095.4 -349 -113 114 -352 

Test23 40 340 0.4 15 2.86 0.3 1093.5 -349 -113 114 -352 

Test24 40 340 0.4 15 2.63 0.4 1091.3 -349 -113 114 -352 

Test25 70 340 0.4 15 2.61 0.6 1141.3 -349 -113 114 -352 

Test30 20 340 0.7 5 2.63 0.3 945.5 -349 -113 114 -352 

Test31 40 340 0.7 5 2.66 0.2 948.1 -349 -113 114 -352 

Test32 70 340 0.7 5 2.53 0.2 940.2 -349 -113 114 -352 

Test33 20 340 0.7 15 2.59 0.6 1129.3 -349 -113 114 -352 

Test34 40 340 0.7 15 2.49 0.5 1126.5 -349 -113 114 -352 

Test35 70 340 0.7 15 2.61 0.7 1151.5 -349 -113 114 -352 

Test36 20 340 0.7 5 2.66 0.3 940.2 -349 -113 114 -352 

Test37 40 340 0.7 5 2.65 0.2 932.6 -349 -113 114 -352 

Test39 70 340 0.7 5 2.61 0.2 933.2 -349 -113 114 -352 

Test40 20 340 0.7 15 1.68 0.3 1015.3 -349 -113 114 -352 

Test41 20 340 0.7 15 2.73 0.7 1154.8 -349 -113 114 -352 

Test42 40 340 0.7 15 2.85 0.7 1134.4 -349 -113 114 -352 
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Test43 70 340 0.7 15 2.42 0.5 1157.3 -349 -113 114 -352 

 Appendix B. EES Script 

The script used in EES to calculate the mixing ratio for E10 fuel for a certain lambda is 

given below. 

 "  Input fuel data for fuel with C, H and O" 
 m_C     =   83.06                             {percent kg/kg-total} 
 m_H     =   13.48 
 m_O     =   3.46 
   
 "HCR = 1.93" 
 "OCR = 0.03" 
   
   
  lambda =1 
   
 MW_C = molarmass(C)                   {kg/kgmol} 
 MW_H = molarmass(H) 
 MW_O = molarmass(O) 
 MW_N = molarmass(N) 
 MW_O2=molarmass(O2) 
 MW_N2 = molarmass(N2) 
 MW_CO=molarmass(CO) 
 MW_CO2=molarmass(CO2) 
 MW_NO=molarmass(NO) 
 MW_NO2=molarmass(NO2) 
 MW_H2=molarmass(H2) 
 MW_H2O=molarmass(H2O) 
   
 "  Molar Ratios for fuel " 
 HCR = (m_H/MW_H) / (m_C/MW_C) 
 OCR = (m_O/MW_O) / (m_C/MW_C) 
   
   
 " Reaction coefficient for C1 Fuel " 
 R    = 1 + HCR/4 - OCR/2 
   
 " Molecular weight of fuel of C1 Fuel " 
 MW_F = MW_C + MW_H*HCR + MW_O*OCR 
   
   
 " Chemical Equation " 
 " Particulate matter is not considered" 
 " NO is considered as its stable product N2" 
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 "! CH(HCR)O(OCR) + lambda*R*(O2 + 3.7738N2) = (a)CO2 + (b)H2O + (c)O2 + (d)N2  " 
   
    
 "! Equations " 
 " Carbon balance " 
   
 " C balance " 
 1 = a  
   
 " H balance " 
 HCR = 2*b  
   
 " O balance " 
 lambda*R*2 + OCR = 2*a + b  +2*c 
   
 " N balance " 
 lambda*R*2*3.7738 = d*2 
   
 Y_H2O = b/(a+b+d+c) 
   
 X_H2O = b*MW_H2O/(a*MW_CO2+c*MW_O2 + d*MW_N2) 
   
 "X_H2O = 0.1" 
   
  M_H2O = b*MW_H2O 
   
 "AFR calculations " 
 AFR = lambda*(R*4.778*28.97) / MW_F 
   
 MF = MW_H2O*lambda*R/(0.965*28.9) 
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 Appendix C. Calculated Data 

C.1. Combustion Parameter Matrix Calculated using Method 1  

The combustion parameters calculated using Method A which is by using only PolyC 

values is given in the table below.  

Table C. 1:  Combustion Parameters Matrix calculated using Method A 

Test# 
CA50 
(CAD 

BTDC) 

CA10 
(CAD 

BTDC) 

CA90 
(CAD 

BTDC) 

CA1090 
(CAD) 

CA0010 
(CAD) 

SD 
CA0010 
(CAD) 

SD 
CA1090 
(CAD) 

SD 
CA10 
(CAD) 

SD 
CA50 
(CAD) 

SD 
CA90 
(CAD) 

Test5 57.4 33.3 94.3 61.0 28.4 3.8 3.8 3.8 6.2 6.3 

Test6 72.0 40.3 115.8 76.5 35.3 6.4 7.3 6.4 11.2 6.7 

Test7 71.3 47.0 109.8 63.0 32.0 5.1 6.6 5.1 7.4 6.4 

Test8 75.0 47.8 114.1 66.4 32.9 3.6 6.2 3.6 5.5 5.9 

Test9 84.7 53.8 122.5 69.1 38.9 4.3 6.5 4.3 6.6 4.7 

Test10 70.1 41.9 109.9 68.8 37.0 6.7 6.4 6.7 11.4 6.9 

Test11 63.8 38.7 109.5 71.1 33.8 5.5 7.8 5.5 9.7 9.1 

Test12 73.3 43.3 112.7 70.9 38.4 8.7 6.9 8.7 13.5 6.9 

Test13 71.8 42.1 111.9 70.9 37.2 7.4 7.0 7.4 12.6 7.1 

Test14 74.0 42.9 120.6 78.1 37.9 5.5 5.7 5.5 9.5 4.3 

Test15 85.0 58.4 111.8 58.3 43.5 13.6 5.9 13.6 16.5 5.4 

Test16 90.8 63.7 119.1 62.2 48.7 15.4 8.6 15.3 16.9 5.1 

Test17 94.4 60.3 123.4 65.3 45.4 8.3 6.3 8.3 11.8 3.7 

Test18 58.1 35.2 93.8 59.7 30.3 9.0 3.6 9.0 11.5 7.8 

Test20 76.7 46.5 118.6 76.6 41.6 16.6 8.2 16.6 17.2 5.4 

Test21 65.6 38.1 118.1 80.6 33.2 6.7 6.9 6.7 10.0 5.5 

Test22 72.8 48.0 108.0 60.2 33.1 6.0 5.0 6.0 7.8 5.5 

Test23 73.1 46.8 113.2 66.5 31.9 3.4 6.7 3.4 5.4 6.3 

Test24 77.7 49.9 113.9 64.0 35.0 4.3 6.3 4.3 6.6 6.0 

Test25 87.4 57.4 124.6 69.1 42.5 7.5 6.7 7.5 11.1 3.9 

Test30 62.1 38.1 101.3 63.3 33.1 4.7 8.5 4.7 6.3 10.9 

Test31 60.7 36.5 101.1 64.5 31.6 3.0 8.3 3.0 4.8 10.1 

Test32 62.3 36.9 111.7 74.7 32.0 2.9 7.1 2.9 4.8 7.8 

Test33 80.7 53.3 117.2 65.6 38.4 9.7 7.6 9.7 11.5 5.7 
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Test34 83.0 54.4 119.7 66.2 39.4 6.7 7.3 6.7 9.4 5.0 

Test35 87.9 58.6 121.3 65.5 43.6 9.6 7.4 9.6 12.3 5.1 

Test36 61.5 36.7 105.1 68.4 31.8 3.6 9.3 3.6 6.0 11.0 

Test37 62.4 36.0 106.1 70.1 31.0 2.8 9.2 2.8 5.1 10.6 

Test39 63.9 36.9 114.8 77.9 31.9 2.8 5.6 2.8 4.8 6.6 

Test40 89.2 56.9 118.6 62.1 41.9 4.3 4.6 4.4 7.0 3.7 

Test41 84.8 57.5 113.8 58.9 42.6 10.6 6.8 10.6 13.0 5.4 

Test42 85.5 56.7 116.9 62.6 41.8 9.9 7.9 9.9 12.7 5.0 

Test43 92.9 60.6 123.6 63.8 45.6 5.6 6.4 5.6 8.5 3.7 

 

C.2. Combustion Parameter Matrix Calculated using Method 2  

The combustion parameters calculated using Method 2 which is by changing the crank 

angle interval for PolyE values calculation is given in the table below.  

Table C. 2: Combustion Parameters Matrix calculated using Method A 

Test# 
CA50 
(CAD 

BTDC) 

CA10 
(CAD 

BTDC) 

CA90 
(CAD 

BTDC) 

CA1090 
(CAD) 

CA0010 
(CAD) 

SD 
CA0010 
(CAD) 

SD 
CA1090 
(CAD) 

SD 
CA10 
(CAD) 

SD 
CA50 
(CAD) 

SD 
CA90 
(CAD) 

Test5 57.4 33.3 94.9 61.7 28.4 3.7 4.4 3.7 6.4 6.1 

Test6 72.1 40.1 113.1 74.3 35.1 6.6 7.2 6.6 12.0 6.6 

Test7 71.3 47.0 109.2 62.5 32.1 5.2 6.6 5.2 7.6 6.1 

Test8 75.0 47.9 113.8 66.2 32.9 3.6 6.2 3.6 5.6 5.8 

Test9 84.6 53.7 120.9 67.8 38.7 4.4 6.3 4.4 6.8 4.7 

Test10 70.3 41.7 108.7 67.9 36.8 6.7 6.0 6.7 11.8 6.6 

Test11 63.7 38.6 108.4 70.2 33.7 5.5 7.7 5.6 9.6 8.4 

Test12 73.5 43.2 111.9 70.5 38.3 8.7 6.9 8.7 14.1 6.5 

Test13 71.9 42.1 111.2 70.6 37.2 7.6 7.1 7.6 13.0 6.7 

Test14 74.0 42.6 119.2 77.1 37.7 5.5 6.2 5.5 9.9 4.8 

Test15 85.1 58.4 111.4 58.2 43.5 13.6 5.6 13.6 16.6 5.3 

Test16 90.9 63.7 118.8 62.0 48.8 15.5 8.4 15.5 17.4 5.0 

Test17 94.4 60.1 122.6 65.0 45.1 8.3 6.0 8.3 12.1 3.7 

Test18 58.3 35.3 93.5 59.6 30.4 9.3 3.9 9.3 12.5 7.3 

Test20 76.5 45.9 115.7 74.5 41.0 16.5 8.3 16.5 17.4 6.3 



www.manaraa.com

 

140 
 

Test21 65.7 37.9 116.2 79.2 33.0 6.9 7.7 6.9 10.8 6.3 

Test22 72.8 47.9 107.5 60.0 33.0 6.1 4.8 6.1 8.0 5.2 

Test23 73.1 46.7 113.3 66.6 31.8 3.4 6.8 3.4 5.4 6.3 

Test24 77.7 49.8 113.6 63.9 34.8 4.3 6.3 4.3 6.7 6.0 

Test25 87.4 57.1 123.3 68.2 42.2 7.5 6.7 7.5 11.4 4.2 

Test30 62.0 38.0 100.5 62.6 33.0 4.5 8.0 4.5 6.2 9.3 

Test31 60.7 36.6 103.3 66.7 31.6 2.9 8.5 2.9 4.7 9.1 

Test32 62.3 36.9 111.8 74.9 31.9 2.8 7.4 2.8 4.8 7.5 

Test33 80.8 53.3 116.6 65.4 38.4 9.9 7.5 9.9 12.0 5.6 

Test34 83.1 54.4 119.4 66.1 39.4 6.7 7.3 6.7 9.7 5.0 

Test35 87.9 58.4 120.7 65.1 43.5 9.7 7.2 9.7 12.5 5.1 

Test36 61.5 36.7 104.1 67.5 31.7 3.5 9.2 3.5 6.0 10.2 

Test37 62.4 36.0 107.1 71.1 31.0 2.7 9.1 2.7 5.1 9.9 

Test39 63.8 36.8 113.6 76.9 31.8 2.7 6.4 2.7 4.8 7.0 

Test40 89.2 56.6 117.8 61.7 41.6 4.4 4.2 4.4 7.2 3.5 

Test41 84.9 57.4 113.2 58.6 42.4 10.7 6.4 10.7 13.4 5.3 

Test42 85.8 56.8 116.5 62.6 41.8 10.1 7.8 10.1 13.3 5.1 

Test43 92.8 60.2 122.8 63.4 45.3 5.6 6.1 5.6 8.7 3.7 
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 Appendix D. Look-Up Tables 

  

Table D. 1: Calibration Table for Exhaust Manifold Thermal Model 

Tm_manifold [K] 270 290 307 500 

Hgs_manifold.Ai_manifold 

[W/(m.K)x(m2)] 
10.5 10.5 6.5 6.55 

 

 

 

Table D. 2: Calibration Table for Turbocharger Thermal Model 

Tm_turbo [K] 290 300 302 308 312 315 

Hgs_turbo.Ai_manifold 

[W/(m.K)x(m2)] 
10 5.4 4.8 3.6 2.5 2.5 

 

Table D. 3: Calibration Table for Catalyst Thermal Model 

Tm_cat [K] 200 350 700 

Hgs_cat.Ai_cat 

[W/(m.K)x(m2)] 
50 50 0 
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